【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=x2經(jīng)過平移得到拋物線y=ax2+bx,其對稱軸與兩段拋物線所圍成的陰影部分的面積為,則a、b的值分別為( 。
A. , B. ,﹣ C. ,﹣ D. ﹣,
【答案】C
【解析】
如下圖,設(shè)平移后所得新拋物線的對稱軸和兩拋物線相交于點(diǎn)A和點(diǎn)B,連接OA,OB,則由拋物線平移的性質(zhì)可知,a=,S陰影=S△OAB,由,可得點(diǎn)A的坐標(biāo)為 ,點(diǎn)B的坐標(biāo)為,由此可得S△OAB=,從而可解得b=.
如下圖,設(shè)平移后所得新拋物線的對稱軸和兩拋物線相交于點(diǎn)A和點(diǎn)B,連接OA,OB,則由拋物線平移的性質(zhì)可知,a=,S陰影=S△OAB,
∴,
∴點(diǎn)A的坐標(biāo)為,點(diǎn)B的坐標(biāo)為,
∴AB=,點(diǎn)O到AB的距離:,
∴S△AOB=,解得:.
綜上所述,.
故選C.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的方程(x-3)(x-5)=m(m>0)有兩個(gè)實(shí)數(shù)根,( < ),則下列選項(xiàng)正確的是( )
A. 3<<<5 B. 3<<5< C. <2< <5 D. <3且 >5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明在一次打籃球時(shí),籃球傳出后的運(yùn)動路線為如圖所示的拋物線,以小明所站立的位置為原點(diǎn)O建立平面直角坐標(biāo)系,籃球出手時(shí)在O點(diǎn)正上方1m處的點(diǎn)P.已知籃球運(yùn)動時(shí)的高度y(m)與水平距離x(m)之間滿足函數(shù)表達(dá)式y=-x2+x+c.
(1)求y與x之間的函數(shù)表達(dá)式;
(2)球在運(yùn)動的過程中離地面的最大高度;
(3)小亮手舉過頭頂,跳起后的最大高度為BC=2.5m,若小亮要在籃球下落過程中接到球,求小亮離小明的最短距離OB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,點(diǎn)E,F(xiàn)在邊BC上,BE=CF,點(diǎn)D在AF的延長線上,AD=AC.
(1)求證:△ABE≌△ACF;
(2)若∠BAE=30°,則∠ADC= °.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知A(-1,0),B(1,0),C為y軸正半軸上一點(diǎn),點(diǎn)D為第三象限一動點(diǎn),CD交AB于F,且∠ADB=2∠BAC,
(1)求證:∠ADB與∠ACB互補(bǔ);
(2)求證:CD平分∠ADB;
(3)若在D點(diǎn)運(yùn)動的過程中,始終有DC=DA+DB,在此過程中,∠BAC的度數(shù)是否變化?如果變化,請說明理由;如果不變,請求出∠BAC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸交于點(diǎn)A(﹣1,0),與y軸的交點(diǎn)B在(0,2)與(0,3)之間(不包括這兩點(diǎn)),對稱軸為直線x=2.下列結(jié)論:abc<0;②9a+3b+c>0;③若點(diǎn)M(,y1),點(diǎn)N(,y2)是函數(shù)圖象上的兩點(diǎn),則y1<y2;④﹣<a<﹣.其中正確結(jié)論有( 。
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于的方程.
若是方程的一個(gè)根,求的值和方程的另一根;
當(dāng)為何實(shí)數(shù)時(shí),方程有實(shí)數(shù)根;
若,是方程的兩個(gè)根,且,試求實(shí)數(shù)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知中,,,動點(diǎn)在的延長線上運(yùn)動,動點(diǎn)在的
延長線上運(yùn)動,且保持的值為.設(shè),.
求與之間的函數(shù)關(guān)系式;
用描點(diǎn)法畫出中函數(shù)的圖象;
已知直線與中函數(shù)圖象的交點(diǎn)坐標(biāo)是,求的值;
求的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com