【題目】把一個(gè)自然數(shù)所有數(shù)位上的數(shù)字先平方再求和得到一個(gè)新數(shù),叫做第一次運(yùn)算,再把所得新數(shù)所有數(shù)位上的數(shù)字先平方再求和又將得到一個(gè)新數(shù),叫做第二次運(yùn)算,……如此重復(fù)下去,若最終結(jié)果為1,我們把具有這種特征的自然數(shù)稱為“快樂數(shù)”.例如:
,
,
所以32和70都是“快樂數(shù)”.
(1)寫出最小的兩位“快樂數(shù)”;判斷19是不是“快樂數(shù)”;并說明理由;
(2)若一個(gè)三位“快樂數(shù)”經(jīng)過兩次運(yùn)算后結(jié)果為1,把這個(gè)三位“快樂數(shù)”與它的各位上的數(shù)字相加所得的和被8除余數(shù)是2,求出這個(gè)“快樂數(shù)”.
【答案】(1)10,是,理由見詳解;(2)310和860.
【解析】
(1)根據(jù)“快樂數(shù)”的定義計(jì)算即可;
(2)設(shè)三位“快樂數(shù)”為100a+10b+c,根據(jù)“快樂數(shù)”的定義計(jì)算.
解:(1)∵12+02=1,
∴最小的兩位“快樂數(shù)”10,
∵19→12+92=82→82+22=68→62+82=100→12+02+02=1,
∴19是快樂數(shù);
(2)設(shè)三位“快樂數(shù)”為100a+10b+c,由題意,經(jīng)過兩次運(yùn)算后結(jié)果為1,所以第一次運(yùn)算后結(jié)果一定是10或者100,
則a2+b2+c2=10或100,
∵a、b、c為整數(shù),且a≠0,
∴當(dāng)a2+b2+c2=10時(shí),12+32+02=10,
①a=1,b=3或0,c=0或3時(shí),三位“快樂數(shù)”為130,103,
②當(dāng)a=2時(shí),無解;
③當(dāng)a=3,b=1或0,c=0或1時(shí),三位“快樂數(shù)”為310,301,
同理當(dāng)a2+b2+c2=100時(shí),62+82+02=100,
∴三位“快樂數(shù)”有680,608,806,860.
綜上一共有130,103,310,301,680,608,806,860八個(gè),
又因?yàn)槿弧翱鞓窋?shù)”與它的各位上的數(shù)字相加所得的和被8除余數(shù)是2,
∴只有310和860滿足已知條件.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A.袋中有形狀、大小、質(zhì)地完全一樣的5個(gè)紅球和1個(gè)白球,從中隨機(jī)抽出一個(gè)球,一定是紅球
B.天氣預(yù)報(bào)“明天降水概率10%”,是指明天有10%的時(shí)間會(huì)下雨
C.某地發(fā)行一種福利彩票,中獎(jiǎng)率是千分之一,那么,買這種彩票1000張,一定會(huì)中獎(jiǎng)
D.連續(xù)擲一枚均勻硬幣,若5次都是正面朝上,則第六次仍然可能正面朝上
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2+bx+c(a≠0)經(jīng)過點(diǎn)(1,1)和(﹣1,0).下列結(jié)論:①a+c=1;②b2﹣4ac≥0;③當(dāng)a<0時(shí),拋物線與x軸必有一個(gè)交點(diǎn)在點(diǎn)(1,0)的右側(cè);④拋物線的對稱軸為x=﹣.其中結(jié)論正確的個(gè)數(shù)有( 。
A.4 個(gè)B.3 個(gè)C.2 個(gè)D.1 個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們知道,任意一個(gè)正整數(shù)都可以進(jìn)行這樣的分解,(,是正整數(shù)且),在的所有這種分解中,如果,兩因數(shù)之差的絕對值最小,我們就稱是的最佳分解,并規(guī)定:,例如可以分解成、或.因?yàn)?/span>,所有是最佳分解,所以.
(1)求.
(2)如果一個(gè)兩位正整數(shù),(,、為自然數(shù)),交換其個(gè)位上的數(shù)與十位上的數(shù)得到的新數(shù)減去原來的兩位正整數(shù)所得的差為,那么我們稱這個(gè)數(shù)為 “吉祥數(shù)”,求所有“吉祥數(shù)”中的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若數(shù)a使關(guān)于x的不等式組至少有3個(gè)整數(shù)解,且使關(guān)于y的分式方程=2有非負(fù)整數(shù)解,則滿足條件的所有整數(shù)a的和是( )
A. 14B. 15C. 23D. 24
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形中,,,點(diǎn)從點(diǎn)出發(fā),以每秒4個(gè)單位長度的速度沿邊運(yùn)動(dòng),到點(diǎn)停止,過點(diǎn)作交于點(diǎn),把繞點(diǎn)逆時(shí)針方向旋轉(zhuǎn)得到 ,點(diǎn)落在線段上,設(shè)點(diǎn)的運(yùn)動(dòng)時(shí)間為 (秒)
(1)求的長,(用含的代數(shù)式表示)
(2)求點(diǎn)在的平分線上時(shí)的長
(3)設(shè)與重合部分圖形的周長為,當(dāng)點(diǎn)與點(diǎn)、均不重合時(shí),求與之間的函數(shù)關(guān)系
(4)在點(diǎn)運(yùn)動(dòng)的同時(shí),點(diǎn)從點(diǎn)出發(fā),以每秒9個(gè)單位長度的速度沿折線運(yùn)動(dòng),當(dāng)點(diǎn)停止運(yùn)動(dòng)時(shí),點(diǎn)也隨之停止,直接寫出點(diǎn)在直線上時(shí)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=k1x+b(k1≠0)與反比例函數(shù)y=(k2≠0)的圖象交于點(diǎn)A(﹣1,2),B(m,﹣1).
(1)求這兩個(gè)函數(shù)的表達(dá)式;
(2)在x軸上是否存在點(diǎn)P(n,0)(n>0),使△ABP為等腰三角形?若存在,求n的值;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖所示的兩條拋物線的解析式分別是y1=-ax2-ax+1,y2=ax2-ax-1(其中a為常數(shù),且a>0).
(1)請寫出三條與上述拋物線有關(guān)的不同類型的結(jié)論;
(2)當(dāng)a=時(shí),設(shè)y1=-ax2-ax+1與x軸分別交于M,N兩點(diǎn)(M在N的左邊),y2=ax2-ax-1與x軸分別交于E,F兩點(diǎn)(E在F的左邊),觀察M,N,E,F四點(diǎn)坐標(biāo),請寫出一個(gè)你所得到的正確結(jié)論,并說明理由;
(3)設(shè)上述兩條拋物線相交于A,B兩點(diǎn),直線l,l1,l2都垂直于x軸,l1,l2分別經(jīng)過A,B兩點(diǎn),l在直線l1,l2之間,且l與兩條拋物線分別交于C,D兩點(diǎn),求線段CD的最大值?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校為表彰在“了不起我的國”演講比賽中獲獎(jiǎng)的選手,決定購買甲、乙兩種圖書作為獎(jiǎng)品.已知購買30本甲種圖書,50本乙種圖書共需1350元;購買50本甲種圖書,30本乙種圖書共需1450元.
(1)求甲、乙兩種圖書的單價(jià)分別是多少元?
(2)學(xué)校要求購買甲、乙兩種圖書共40本,且甲種圖書的數(shù)量不少于乙種圖書數(shù)量的,請?jiān)O(shè)計(jì)最省錢的購書方案.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com