精英家教網(wǎng)附加題:如圖,在Rt△ABC中,BC、AC、AB三邊的長分別為a、b、c,則sinA=
a
c
,cosA=
b
c
,tanA=
a
b
.我們不難發(fā)現(xiàn):sin260°+cos260°=1,…試探求sinA、cosA、tanA之間存在的一般關(guān)系,并說明理由.
分析:利用銳角三角函數(shù)的概念:sinA=
a
c
,cosA=
b
c
,tanA=
a
b
對(1)sin2A+cos2A=1;(2)用tanA=
sinA
cosA
進行證明.
解答:解:存在的一般關(guān)系有:
(1)sin2A+cos2A=1;
(2)tanA=
sinA
cosA

證明:(1)∵sinA=
a
c
,cosA=
b
c

a2+b2=c2,
∴sin2A+cos2A=
a2
c2
+
b2
c2
=
a2+b2
c2
=
c2
c2
=1.

(2)∵sinA=
a
c
,cosA=
b
c

∴tanA=
a
b
=
a
c
b
c
,
=
sinA
cosA
點評:本題通過利用勾股定理和銳角三角函數(shù)的概念來對銳角的一般關(guān)系:
(1)sin2A+cos2A=1;(2)tanA=
sinA
cosA
的證明推導.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:第1章《直角三角形的邊角關(guān)系》中考題集(16):1.3 三角函數(shù)的有關(guān)計算(解析版) 題型:解答題

附加題:如圖,在Rt△ABC中,BC、AC、AB三邊的長分別為a、b、c,則sinA=,cosA=,tanA=.我們不難發(fā)現(xiàn):sin260°+cos260°=1,…試探求sinA、cosA、tanA之間存在的一般關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:第1章《解直角三角形》中考題集(12):1.1 銳角三角函數(shù)(解析版) 題型:解答題

附加題:如圖,在Rt△ABC中,BC、AC、AB三邊的長分別為a、b、c,則sinA=,cosA=,tanA=.我們不難發(fā)現(xiàn):sin260°+cos260°=1,…試探求sinA、cosA、tanA之間存在的一般關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:第21章《解直角三角形》中考題集(11):21.2 特殊角的三角函數(shù)值(解析版) 題型:解答題

附加題:如圖,在Rt△ABC中,BC、AC、AB三邊的長分別為a、b、c,則sinA=,cosA=,tanA=.我們不難發(fā)現(xiàn):sin260°+cos260°=1,…試探求sinA、cosA、tanA之間存在的一般關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:第25章《解直角三角形》中考題集(11):25.2 銳角的三角函數(shù)值(解析版) 題型:解答題

附加題:如圖,在Rt△ABC中,BC、AC、AB三邊的長分別為a、b、c,則sinA=,cosA=,tanA=.我們不難發(fā)現(xiàn):sin260°+cos260°=1,…試探求sinA、cosA、tanA之間存在的一般關(guān)系,并說明理由.

查看答案和解析>>

同步練習冊答案