【題目】已知:如圖,在ABC中,ABAC,ADBC邊上的中線,點EAD上一點,過點BBFEC,交AD的延長線于點F,連接BE,CF

1)求證:BDF≌△CDE;

2)當EDBC滿足什么數(shù)量關系時,四邊形BECF是正方形?請說明理由.

【答案】(1)詳見解析;(2)當DEBC時,四邊形BECF是正方形.

【解析】

1)根據(jù)等腰三角形的性質(zhì)得到BD=CD,根據(jù)全等三角形的判定定理即可得到結(jié)論;

2)根據(jù)全等三角形的性質(zhì)得到BF=CE,DE=DF,推出四邊形BECF是平行四邊形,得到四邊形BECF是菱形,于是得到結(jié)論.

1)證明:∵ADBC邊上的中線,ABAC

BDCD,

BFEC

∴∠DBF=∠DCE,

∵∠BDF=∠CDE

∴△BDF≌△CDEASA);

2)解:當DEBC時,四邊形BECF是正方形,

理由:∵△BDF≌△CDE,

BFCE,DEDF

BFCE,

∴四邊形BECF是平行四邊形,

ABACAD是中線,

∴四邊形BECF是菱形,

DEBCDEDFEF,

EFBC

∴四邊形BECF是正方形

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)y=-x2+(n-1)x+3的圖像與y軸交于點A,與x軸的負半軸交于點B(-2,0)

(1)求二次函數(shù)的解析式;

(2)P是這個二次函數(shù)圖像在第二象限內(nèi)的一線,過點Py軸的垂線與線段AB交于點C,求線段PC長度的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,正方形ABCD的位置如圖所示,點A的坐標為(1,0),點D的坐標為(0,3).延長CBx軸于點A1,作正方形A1B1C1C;延長C1B1x軸于點A2,作正方形A2B2C2C1,…,按這樣的規(guī)律進行下去,第2017個正方形的面積為(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)的圖象經(jīng)過點.

1)當時,若點在該二次函數(shù)的圖象上,求該二次函數(shù)的表達式;

2)已知點,在該二次函數(shù)的圖象上,求的取值范圍;

3)當時,若該二次函數(shù)的圖象與直線交于點,且,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知等邊三角形,頂點在雙曲線上,點的坐標為.過交雙曲線于點,過軸于點,得到第二個等邊;過交雙曲線于點,過軸于點,得到第三個等邊;以此類推,... 則點的坐標為____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知四邊形ABCD是菱形,BCx軸,點B的坐標是(1,),坐標原點OAB的中點.動圓⊙P的半徑是,圓心在x軸上移動,若⊙P在運動過程中只與菱形ABCD的一邊相切,則點P的橫坐標m 的取值范圍是_________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB為⊙O的直徑,C、D為⊙O上不同于A、B的兩點,∠ABD2BAC,連接CD,過點CCEDB,垂足為E,直徑ABCE的延長線相交于F點.

1)求證:CF是⊙O的切線;

2)當BD,sinF時,求OF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】九年級(1)班開展了為期一周的“敬老愛親”社會活動,并根據(jù)學生做家務的時間來評價他們在活動中的表現(xiàn).老師調(diào)查了全班50名學生在這次活動中做家務的時間,并將統(tǒng)計的時間(單位:小時)分成5組:A:0.5≤x<1,B:1≤x<1.5,C:1.5≤x<2,D:2≤x<2.5,E:2.5≤x<3,制作成兩幅不完整的統(tǒng)計圖(如圖).

請根據(jù)圖中提供的信息,解答下列問題:

(1)這次活動中學生做家務時間的中位數(shù)所在的組是____________;

(2)補全頻數(shù)分布直方圖;

(3)該班的小明同學這一周做家務2小時,他認為自己做家務的時間比班里一半以上的同學多,你認為小明的判斷符合實際嗎?請用適當?shù)慕y(tǒng)計知識說明理由.

查看答案和解析>>

同步練習冊答案