拋物線y=-(x+3)(2x+a)與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),若∠ACB=90°,則a的值為   
【答案】分析:根據(jù)拋物線解析式可求A、B、C三點(diǎn)坐標(biāo)分別是(-3,0),(-,0),(0,-3a);根據(jù)三點(diǎn)坐標(biāo)及坐標(biāo)軸互相垂直,利用勾股定理分別表示AB2,AC2,BC2;∵∠ACB=90°∴AB2=AC2+BC2,列方程求解.
解答:解:當(dāng)y=0時(shí),-(x+3)(2x+a)=0,
解得x1=-3,x2=-,
即與x軸的交點(diǎn)坐標(biāo)分別是(-3,0),(-,0),
當(dāng)x=0時(shí),y=-3a,
即與y軸的交點(diǎn)坐標(biāo)是C(0,-3a),
∵∠ACB=90°,
∴AB2=AC2+BC2,
∴(3-2=9+9a2+a2,
解得:a=0(舍去),a=-
點(diǎn)評:考查待定系數(shù)法是一種求未知數(shù)的方法.解此題的關(guān)鍵是利用直角三角形中的勾股定理作為相等關(guān)系解a值.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,直線y=
4
3
x-4與x軸交于點(diǎn)A,與y軸交于點(diǎn)C,已知二次函數(shù)y=
4
3
x2+bx+c的圖象經(jīng)過點(diǎn)精英家教網(wǎng)A和C,和x軸的另一個(gè)交點(diǎn)為B.
(1)求該二次函數(shù)的關(guān)系式;
(2)直接寫出該拋物線的對稱軸及頂點(diǎn)M的坐標(biāo);
(3)求四邊形ABCM的面積S.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

求過(-1,0),(3,0),(1,-5)三點(diǎn)的拋物線的解析式,并畫出該拋物線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

拋物線y=(k2-2)x2-4kx+m的對稱軸是直線x=2,且它的最低點(diǎn)在直線y=-2x+2上,求:
(1)函數(shù)解析式;
(2)若拋物線與x軸交點(diǎn)為A、B與y軸交點(diǎn)為C,求△ABC面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知拋物線C1:y=x2-2x的圖象如圖所示,把C1的圖象沿y軸翻折,得到拋物線C2的圖象,拋物線C1與拋物線C2的圖象合稱圖象C3
(1)求拋物線C1的頂點(diǎn)A坐標(biāo),并畫出拋物線C2的圖象;
(2)若直線y=kx+b與拋物線y=ax2+bx+c(a≠0)有且只有一個(gè)交點(diǎn)時(shí),稱直線與拋物線相切.若直線y=x+b與拋物線C1相切,求b的值;
(3)結(jié)合圖象回答,當(dāng)直線y=x+b與圖象C3有兩個(gè)交點(diǎn)時(shí),b的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,一單桿高2.2m,兩立柱之間的距離為1.6m,將一根繩子的兩端栓于立柱與鐵杠結(jié)合處,繩子自然下垂呈拋物線狀.
(1)一身高0.7m的小孩站在離立柱0.4m處,其頭部剛好觸上繩子,求繩子最低點(diǎn)到地面的距離;
(2)為供孩子們打秋千,把繩子剪斷后,中間系上一塊長為0.4米的木板,除掉系木板用去的繩子后,兩邊的繩子正好各為2米,木板與地面平行,求這時(shí)木板到地面的距離.(供選用數(shù)據(jù):
3.36
≈1.8,
3.64
≈1.9,
4.39
≈2.1)
精英家教網(wǎng)

查看答案和解析>>

同步練習(xí)冊答案