【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=4,以點(diǎn)C為圓心,CB的長(zhǎng)為半徑畫弧,與AB邊交于點(diǎn)D,將繞點(diǎn)D旋轉(zhuǎn)180°后點(diǎn)B與點(diǎn)A恰好重合,則圖中陰影部分的面積為_____

【答案】π﹣8

【解析】繞點(diǎn)D旋轉(zhuǎn)180°后點(diǎn)B與點(diǎn)A恰好重合,

∴BD=AD,S弓形BD=S弓形AD,

∴CD為斜邊AB邊上的中線,

∴CD=BD=AD,

∵CD=CB,

∴△CBD為等邊三角形,

∴∠CBD=∠BCD=60°,

Rt△ABC中,BC=AC=×4=4,

圖中陰影部分的面積=2S弓形BD=2(42)=π﹣8

故答案為π﹣8

點(diǎn)睛:本題考查了扇形面積的計(jì)算:陰影面積常用的方法,直接用公式法,和差法,割補(bǔ)法.求陰影面積的主要思路是將不規(guī)則圖形面積轉(zhuǎn)化為規(guī)則圖形的面積.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】觀察等式(2a1a+21,其中a的取值可能是(  )

A.2B.1或﹣2C.01D.1或﹣20

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】64°27′的余角是_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將含有30°角的直角三角板OAB按如圖所示的方式放置在平面直角坐標(biāo)系中,OB在x軸上,若OA=4,將三角板繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn),每秒旋轉(zhuǎn)60°,則第2017秒時(shí),點(diǎn)A的對(duì)應(yīng)點(diǎn)A′的坐標(biāo)為(  )

A. (0,4) B. (2,﹣2) C. (﹣2,2) D. (0,﹣4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如(y+a)與(y﹣7)的乘積中不含y的一次項(xiàng),則a的值為(  )
A.7
B.﹣7
C.0
D.14

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某電器超市銷售每臺(tái)進(jìn)價(jià)分別為200元、170元的A、B兩種型號(hào)的電風(fēng)扇,下表是近兩周的銷售情況:

銷售時(shí)段

銷售數(shù)量

銷售收入

A種型號(hào)

B種型號(hào)

第一周

3臺(tái)

5臺(tái)

1800元

第二周

4臺(tái)

10臺(tái)

3100元

(進(jìn)價(jià)、售價(jià)均保持不變,利潤(rùn)=銷售收入-進(jìn)貨成本)

(1)求A、B兩種型號(hào)的電風(fēng)扇的銷售單價(jià);

(2)若超市準(zhǔn)備用不多于5400元的金額再采購(gòu)這兩種型號(hào)的電風(fēng)扇共30臺(tái),求A種型號(hào)的電風(fēng)扇最多能采購(gòu)多少臺(tái)?

(3)在(2)的條件下,超市銷售完這30臺(tái)電風(fēng)扇能否實(shí)現(xiàn)利潤(rùn)為1400元的目標(biāo)?若能,請(qǐng)給出相應(yīng)的采購(gòu)方案;若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖的坐標(biāo)系中,畫出函數(shù)y=2與y=2x+6的圖象,并結(jié)合圖象求:

(1)方程2x+6=0的解;
(2)不等式2x+6>2的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,AC=6,BC=8,點(diǎn)P從點(diǎn)A出發(fā)沿邊AC向點(diǎn)C以每秒1個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),同時(shí)點(diǎn)Q從點(diǎn)C出發(fā)沿邊CB向點(diǎn)B以每秒a個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),過點(diǎn)P作PD⊥BC,交AB于點(diǎn)D,連接PQ.當(dāng)其中一點(diǎn)到達(dá)端點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒(t≥0).

(1)當(dāng)a=2時(shí),解答下列問題:

①Q(mào)B=   ,PD=   .(用含t的代數(shù)式分別表示)

②通過計(jì)算說明,不存在t的值使得四邊形PDBQ為菱形.

(2)當(dāng)a為某個(gè)數(shù)值時(shí),四邊形PDBQ在某一時(shí)刻為菱形,求a的值及四邊形PDBQ為菱形時(shí)t的值.

(3)當(dāng)t=2時(shí),在整個(gè)運(yùn)動(dòng)過程中,恰好存在線段PQ的中點(diǎn)M到△ABC三邊距離相等,直接寫出此刻a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,方格紙中每個(gè)小方格都是邊長(zhǎng)為1的正方形,我們把以格點(diǎn)連線為邊的多邊形稱為“格點(diǎn)多邊形”,如圖1中四邊形ABCD就是一個(gè)“格點(diǎn)四邊形”.

(1)求圖1中四邊形ABCD的面積;
(2)在圖2方格紙中畫一個(gè)格點(diǎn)三角形EFG,使△EFG的面積等于四邊形ABCD的面積且為軸對(duì)稱圖形.

查看答案和解析>>

同步練習(xí)冊(cè)答案