【題目】某校為了解學(xué)生的課外閱讀情況,隨機(jī)調(diào)查了部分學(xué)生平均每天的課外閱讀時間,并根據(jù)調(diào)查結(jié)果制成被調(diào)查學(xué)生人數(shù)的統(tǒng)計圖表如下,但信息不完整.
時間(小時) | 0.5 | 1 | 1.5 | 2 |
人數(shù) | 2 | 5 | 3 |
請根據(jù)所提供信息,解決下列問題:
(1)求扇形統(tǒng)計圖中,讀書時間為“2小時”部分的圓心角的度數(shù).
(2)通過計算估計全校每個學(xué)生平均每天的課外閱讀時間.
(3)從被調(diào)查的課外讀書時間最少和最多的學(xué)生中,隨機(jī)抽2個學(xué)生進(jìn)行訪談,求各抽到1人的概率.
【答案】(1)72°;(2)1.3小時;(3)
【解析】
(1)用360°乘以閱讀時間為2小時的部分所占的比例即可.
(2)先求出被調(diào)查學(xué)生人數(shù),再求出閱讀時間為1小時的人數(shù),即可求出被調(diào)查學(xué)生的課外閱讀時間,據(jù)此估計可全校每個學(xué)生平均每天的課外閱讀時間.
(3)用列表求出一共有多少種等可能的結(jié)果,看各抽到1人有幾種結(jié)果,即可確定各抽到1人的概率.
(1)∵閱讀時間為2小時的人數(shù)占20%,
∴其圓心角為360°×20%=72°.
(2)∵閱讀時間為2小時的人數(shù)為3人,占20%,
∴被調(diào)查學(xué)生人數(shù)為=15,
∴閱讀時間為1小時的人數(shù)為15-(2+5+3)=5,則每個學(xué)生課外平均閱讀時間為:
(小時)
∴估計全校每個學(xué)生平均每天的課外閱讀時間為1.3小時.
(3)設(shè)閱讀時間最少的2人為A1,A2,閱讀時間最多的3人為B1,B2,B3,列表為:
第二個人 第一個人 | A1 | A2 | B1 | B2 | B3 |
A1 | ― | (A1A2) | (A1B1) | (A1B2) | (A1B3) |
A2 | (A2A1) | ― | (A2B1) | (A2B2) | (A2B3) |
B1 | (B1A1) | (B1A2) | ― | (B1B2) | (B1B3) |
B2 | (B2A1) | (B2A2) | (B2B1) | ― | (B2B3) |
B3 | (B3A1) | (B3A2) | (B3B1) | (B3B2) | ― |
共有20種等可能的結(jié)果,其中各抽到1人的抽法有12種,則各抽到1人的概率.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,sin∠C,長度為2的線段ED在射線CF上滑動,點(diǎn)B在射線CA上,且BC=5,則△BDE周長的最小值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,tanA=,M,N分別在邊AD,BC上,將四邊形AMNB沿MN翻折,使AB的對應(yīng)線段EF經(jīng)過頂點(diǎn)D,當(dāng)EF⊥AD時,的值為( 。
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀理解題:學(xué)習(xí)了二次根式后,你會發(fā)現(xiàn)一些含有根號的式子可以寫成另一個式子的平方,如3+2=(1+)2,我們來進(jìn)行以下的探索:
設(shè)a+b=(m+n)2(其中a,b,m,n都是正整數(shù)),則有a+b=m2+2n2+2mn,∴a=m2+2n2,b=2mn,這樣就得出了把類似a+b的式子化為平方式的方法,請仿照上述方法探索并解決下列問題:
(1)當(dāng)a,b,m,n都為正整數(shù)時,若a+b=(m+n)2,用含m,n的式子分別表示a,b,得a= ,b= .
(2)若a﹣4=(m﹣n)2且a,m,n都為正整數(shù),求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,E為邊AD的中點(diǎn),點(diǎn)F在邊CD上,且∠BEF=90°,延長EF交BC的延長線于點(diǎn)G.
(1)求證:△ABE∽△EGB.
(2)若AB=4,求CG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,是由北京國際數(shù)學(xué)家大會的會徽演化而成的圖案,其主體部分是由一連串的等腰直角三角形依次連接而成,其中∠MA1A2=∠MA2A3…=∠MAnAn+1=90°,(n為正整數(shù)),若M點(diǎn)的坐標(biāo)是(﹣1,2),A1的坐標(biāo)是(0,2),則A22的坐標(biāo)為( 。
A.(﹣1﹣29,2﹣29)B.(1﹣29,2﹣29)
C.(﹣1﹣210,2﹣210)D.(1﹣210,2﹣210)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰三角形ABC內(nèi)接于⊙O,CA=CB,過點(diǎn)A作AE∥BC,交⊙O于點(diǎn)E,過點(diǎn)C作⊙O的切線交AE的延長線于點(diǎn)D,已知AB=6,BE=3.
(1)求證:四邊形ABCD為平行四邊形;
(2)延長AO交DC的延長線于點(diǎn)F,求AF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場要經(jīng)營一種新上市的文具,進(jìn)價為20元,試營銷階段發(fā)現(xiàn):當(dāng)銷售單價是25元時,每天的銷售量為250件,銷售單價每上漲1元,每天的銷售量就減少10件
(1)寫出商場銷售這種文具,每天所得的銷售利潤(元)與銷售單價(元)之間的函數(shù)關(guān)系式;
(2)求銷售單價為多少元時,該文具每天的銷售利潤最大;
(3)商場的營銷部結(jié)合上述情況,提出了A、B兩種營銷方案
方案A:該文具的銷售單價高于進(jìn)價且不超過30元;
方案B:每天銷售量不少于10件,且每件文具的利潤至少為25元
請比較哪種方案的最大利潤更高,并說明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將沿著過的中點(diǎn)的直線折疊,使點(diǎn)落在邊上的處,稱為第一次操作,折痕到的距離為;還原紙片后,再將沿著過的中點(diǎn)的直線折疊,使點(diǎn)落在邊上的處,稱為第二次操作,折痕到的距離記為;按上述方法不斷操作下去……經(jīng)過第次操作后得到折痕,到的距離記為.若,則的值為( 。
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com