【題目】如圖,港口在觀測(cè)站的正東方向,=4km,某船從港口出發(fā),沿北偏東方向航行一段距離后到達(dá)處,此時(shí)從觀測(cè)站處側(cè)得該船位于北偏東的方向,則該船與觀測(cè)站之間的距離(即的長(zhǎng))為( )
A. km B. km C. km D. km
【答案】C
【解析】
過點(diǎn)A作AD⊥OB于D.先解Rt△AOD,得出AD=OA=2,利用勾股定理求出OD的長(zhǎng),再由△ABD是等腰直角三角形,得出BD=AD=2,則OB=BD+OD=2+2=2(+1).
如圖,過點(diǎn)A作AD⊥OB于D.
在Rt△AOD中,∵∠ADO=90°,∠AOD=30°,OA=4,
∴AD=OA=2, ∴OD=,
在Rt△ABD中,∵∠ADB=90°,∠B=∠CAB-∠AOB=75°-30°=45°,
∴BD=AD=2,
∴OB=BD+OD=2+2=2(+1),
即該船與觀測(cè)站之間的距離(即的長(zhǎng))為2(+1)km.
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)A的坐標(biāo)為(3,4),點(diǎn)B的坐標(biāo)為(7,0),D,E分別是線段AO,AB上的點(diǎn),以DE所在直線為對(duì)稱軸,把△ADE作軸對(duì)稱變換得△A′DE,點(diǎn)A′恰好在x軸上,若△OA′D與△OAB相似,則OA′的長(zhǎng)為________.(結(jié)果保留2個(gè)有效數(shù)字)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠C=90°,點(diǎn)A、B在∠C的兩邊上,CA=30,CB=20,連接AB.點(diǎn)P從點(diǎn)B出發(fā),以每秒4個(gè)單位長(zhǎng)度的速度沿BC的方向運(yùn)動(dòng),到點(diǎn)C停止.當(dāng)點(diǎn)P與B、C兩點(diǎn)不重合時(shí),作PD⊥BC交AB于點(diǎn)D,作DE⊥AC于點(diǎn)E.F為射線CB上一點(diǎn),使得∠CEF=∠ABC.設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為x秒.
(1)用含有x的代數(shù)式表示CE的長(zhǎng).
(2)求點(diǎn)F與點(diǎn)B重合時(shí)x的值.
(3)當(dāng)點(diǎn)F在線段CB上時(shí),設(shè)四邊形DECP與四邊形DEFB重疊部分圖形的面積為y(平方單位).求y與x之間的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC是邊長(zhǎng)為4的等邊三角形,邊AB在射線OM上,且OA=6,點(diǎn)D是射線OM上的動(dòng)點(diǎn),當(dāng)點(diǎn)D不與點(diǎn)A重合時(shí),將△ACD繞點(diǎn)C逆時(shí)針方向旋轉(zhuǎn)60°得到△BCE,連接DE.
(1)如圖1,求證:△CDE是等邊三角形.
(2)設(shè)OD=t,
①當(dāng)6<t<10時(shí),△BDE的周長(zhǎng)是否存在最小值?若存在,求出△BDE周長(zhǎng)的最小值;若不存在,請(qǐng)說明理由.
②求t為何值時(shí),△DEB是直角三角形(直接寫出結(jié)果即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解同學(xué)們的身體發(fā)育情況,學(xué)校體衛(wèi)辦公室對(duì)七年級(jí)全體學(xué)生進(jìn)行了身高測(cè)量(精確到1cm),并從中抽取了部分?jǐn)?shù)據(jù)進(jìn)行統(tǒng)計(jì),請(qǐng)根據(jù)尚未完成的頻數(shù)分布表和頻數(shù)分布直方圖解答下列問題:
頻率分布表
分組 | 頻數(shù) | 百分比 |
144.5~149.5 | 2 | 4% |
149.5~154.5 | 3 | 6% |
154.5~159.5 | a | 16% |
159.5~164.5 | 17 | 34% |
164.5~169.5 | b | n% |
169.5~174.5 | 5 | 10% |
174.5~179.5 | 3 | 6% |
(1)求a、b、n的值;
(2)補(bǔ)全頻數(shù)分布直方圖;
(3)學(xué)校準(zhǔn)備從七年級(jí)學(xué)生中選拔護(hù)旗手,要求身高不低于170cm,如果七年級(jí)有學(xué)生350人,護(hù)旗手的候選人大概有多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠ABC=90°,以AB為直徑作⊙O,點(diǎn)D為⊙O上一點(diǎn),且CD=CB、連接DO并延長(zhǎng)交CB的延長(zhǎng)線于點(diǎn)E.
(1)判斷直線CD與⊙O的位置關(guān)系,并說明理由;
(2)若BE=4,DE=8,求AC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形網(wǎng)格圖中建立一直角坐標(biāo)系,一條圓弧經(jīng)過網(wǎng)格點(diǎn)A、B、C,請(qǐng)?jiān)诰W(wǎng)格中進(jìn)行下列操作:
(1)請(qǐng)?jiān)趫D中確定該圓弧所在圓心D點(diǎn)的位置,D點(diǎn)坐標(biāo)為 ;
(2)連接AD、CD,求⊙D的半徑及扇形DAC的圓心角度數(shù);
(3)若扇形DAC是某一個(gè)圓錐的側(cè)面展開圖,求該圓錐的底面半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠B90°,AB4,BC2,以AC為邊作△ACE,∠ACE90°,AC=CE,延長(zhǎng)BC至點(diǎn)D,使CD5,連接DE.求證:△ABC∽△CED.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,甲、乙為兩座建筑物,它們之間的水平距離BC為30m,在A點(diǎn)測(cè)得D點(diǎn)的仰角∠EAD為45°,在B點(diǎn)測(cè)得D點(diǎn)的仰角∠CBD為60°,則乙建筑物的高度為( )米.
A. 30 B. 30﹣30 C. 30 D. 30
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com