【題目】已知:如圖,在△ABC中,AB=AC,以AB為直徑的⊙O交BC于點D,過點D作DE⊥AC于點E.
(1)求證:DE是⊙O的切線.
(2)若⊙O的半徑為3cm,∠C=30°,求圖中陰影部分的面積.
【答案】(1)見解析;(2)(3π﹣)cm2
【解析】
(1)由等腰三角形的性質證出∠ODB=∠C.得出OD∥AC.由已知條件證出DE⊥OD,即可得出結論;
(2)由垂徑定理求出OF,由勾股定理得出DF,求出BD,得出△BOD的面積,再求出扇形BOD的面積,即可得出結果.
(1)連接OD,如圖1所示:
∵OD=OB,
∴∠B=∠ODB.
∵AB=AC,
∴∠B=∠C.
∴∠ODB=∠C.
∴OD∥AC.
∵DE⊥AC,
∴DE⊥OD,
∴DE是⊙O的切線.
(2)過O作OF⊥BD于F,如圖2所示:
∵∠C=30°,AB=AC,OB=OD,
∴∠OBD=∠ODB=∠C=30°,
∴∠BOD=120°,
在Rt△DFO中,∠FDO=30°,
∴OF=OD=cm,
∴DF==cm,
∴BD=2DF=3cm,
∴S△BOD=×BD×OF=×3×=cm2,
S扇形BOD==3πcm2,
∴S陰=S扇形BOD﹣S△BOD==(3π﹣)cm2.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某校教學樓AB后方有一斜坡,斜坡與教學樓剖面在同一平面內(nèi),已知斜坡CD的長為6m,坡度i=1:0.75,教學樓底部到斜坡底部的水平距離AC=8m,在教學樓頂部B點測得斜坡頂部D點的俯角為46°,則教學樓的高度約為( )
(參考數(shù)據(jù):sin46°≈0.72,cos46°≈0.69,tan46°≈1.04).
A.12.1mB.13.3m
C.16.9mD.18.1m
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】疫情無情人有情,愛心捐款傳真情,新型冠狀病毒感染的肺炎疫情期間,某班學生積極參加獻愛心活動,該班50名學生的捐款統(tǒng)計情況如下表:
金額/元 | 5 | 10 | 20 | 50 | 100 |
人數(shù) | 6 | 17 | 14 | 8 | 5 |
則他們捐款金額的眾數(shù)和中位數(shù)分別是( )
A.100,10B.10,20C.17,10D.17,20
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】
如圖所示,某地區(qū)對某種藥品的需求量y1(萬件),供應量y2(萬件)與價格x(元/件)分別近似滿足下列函數(shù)關系式:y1=-x + 70,y2=2x-38,需求量為0時,即停止供應.當y1=y2時,該藥品的價格稱為穩(wěn)定價格,需求量稱為穩(wěn)定需求量.
(1)求該藥品的穩(wěn)定價格與穩(wěn)定需求量.
(2)價格在什么范圍內(nèi),該藥品的需求量低于供應量?
(3)由于該地區(qū)突發(fā)疫情,政府部門決定對藥品供應方提供價格補貼來提高供貨價格,以利提高供應量.根據(jù)調(diào)查統(tǒng)計,需將穩(wěn)定需求量增加6萬件,政府應對每件藥品提供多少元補貼,才能使供應量等于需求量.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某漁船在海面上朝正西方向以20海里/時勻速航行,在A處觀測到燈塔C在北偏西60°方向上,航行1小時到達B處,此時觀察到燈塔C在北偏西30°方向上,若該船繼續(xù)向西航行至離燈塔距離最近的位置,求此時漁船到燈塔的距離(結果精確到1海里,參考數(shù)據(jù): ≈1.732)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】青海新聞網(wǎng)訊:2016年2月21日,西寧市首條綠道免費公共自行車租賃系統(tǒng)正式啟用.市政府今年投資了112萬元,建成40個公共自行車站點、配置720輛公共自行車.今后將逐年增加投資,用于建設新站點、配置公共自行車.預計2018年將投資340.5萬元,新建120個公共自行車站點、配置2205輛公共自行車.
(1)請問每個站點的造價和公共自行車的單價分別是多少萬元?
(2)請你求出2016年到2018年市政府配置公共自行車數(shù)量的年平均增長率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是直經(jīng),D是的中點,DE⊥AC交AC的延長線于E,⊙O的切線BF交AD的延長線于點F.
(1)求證:DE是⊙O的切線.
(2)試探究AE,AD,AB三者之間的等量關系.
(3)若DE=3,⊙O的半徑為5,求BF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,是半徑為的上的定點,動點從出發(fā),以的速度沿圓周逆時針運動,當點回到地立即停止運動.
(1)如果,求點運動的時間;
(2)如果點是延長線上的一點,,那么當點運動的時間為時,判斷直線與的位置關系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù) (a 0) 與 x 軸交于 A、C 兩點,與 y 軸交于點 B,P 為 拋物線的頂點,連接 AB,已知 OA:OC=1:3.
(1)求 A、C 兩點坐標;
(2)過點 B 作 BD∥x 軸交拋物線于 D,過點 P 作 PE∥AB 交 x 軸于 E,連接 DE,
①求 E 坐標;
②若 tan∠BPM=,求拋物線的解析式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com