【題目】已知:如圖,在ABC中,ABAC,以AB為直徑的⊙OBC于點D,過點DDEAC于點E

1)求證:DE是⊙O的切線.

2)若⊙O的半徑為3cm,∠C30°,求圖中陰影部分的面積.

【答案】1)見解析;(2)(cm2

【解析】

1)由等腰三角形的性質證出ODBC.得出ODAC.由已知條件證出DEOD,即可得出結論;

2)由垂徑定理求出OF,由勾股定理得出DF,求出BD,得出BOD的面積,再求出扇形BOD的面積,即可得出結果.

1)連接OD,如圖1所示:

ODOB,

∴∠BODB

ABAC,

∴∠BC

∴∠ODBC

ODAC

DEAC

DEOD,

DEO的切線.

2)過OOFBDF,如圖2所示:

∵∠C30°,ABACOBOD,

∴∠OBDODBC30°

∴∠BOD120°,

Rt△DFO中,FDO30°

OFODcm,

DFcm,

BD2DF3cm,

SBOD×BD×OF×3×cm2,

S扇形BODcm2,

SS扇形BODSBOD=(cm2

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某校教學樓AB后方有一斜坡,斜坡與教學樓剖面在同一平面內(nèi),已知斜坡CD的長為6m,坡度i=1:0.75,教學樓底部到斜坡底部的水平距離AC=8m,在教學樓頂部B點測得斜坡頂部D點的俯角為46°,則教學樓的高度約為(

(參考數(shù)據(jù):sin46°≈0.72cos46°≈0.69,tan46°≈1.04).

A.121mB.133m

C.169mD.181m

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】疫情無情人有情,愛心捐款傳真情,新型冠狀病毒感染的肺炎疫情期間,某班學生積極參加獻愛心活動,該班50名學生的捐款統(tǒng)計情況如下表:

金額/

5

10

20

50

100

人數(shù)

6

17

14

8

5

則他們捐款金額的眾數(shù)和中位數(shù)分別是( )

A.100,10B.1020C.17,10D.17,20

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】

如圖所示,某地區(qū)對某種藥品的需求y1(萬件),供應量y2(萬件)與價格x(元/件)分別近似滿足下列函數(shù)關系式y1=x + 70y2=2x38,需求量為0時,即停止供應.y1=y2時,該藥品的價格稱為穩(wěn)定價格,需求量稱為穩(wěn)定需求量.

(1)求該藥品的穩(wěn)定價格與穩(wěn)定需求量.

(2)價格在什么范圍內(nèi),該藥品的需求量低于供應量?

(3)由于該地區(qū)突發(fā)疫情,政府部門決定對藥品供應方提供價格補貼來提高供貨價格,以利提高供應量.根據(jù)調(diào)查統(tǒng)計,需將穩(wěn)定需求量增加6萬件,政府應對每件藥品提供多少元補貼,才能使供應量等于需求量.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某漁船在海面上朝正西方向以20海里/時勻速航行,在A處觀測到燈塔C在北偏西60°方向上,航行1小時到達B處,此時觀察到燈塔C在北偏西30°方向上,若該船繼續(xù)向西航行至離燈塔距離最近的位置,求此時漁船到燈塔的距離(結果精確到1海里,參考數(shù)據(jù): ≈1.732)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】青海新聞網(wǎng)訊:2016221日,西寧市首條綠道免費公共自行車租賃系統(tǒng)正式啟用.市政府今年投資了112萬元,建成40個公共自行車站點、配置720輛公共自行車.今后將逐年增加投資,用于建設新站點、配置公共自行車.預計2018年將投資340.5萬元,新建120個公共自行車站點、配置2205輛公共自行車.

1)請問每個站點的造價和公共自行車的單價分別是多少萬元?

2)請你求出2016年到2018年市政府配置公共自行車數(shù)量的年平均增長率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是直經(jīng),D的中點,DEACAC的延長線于EO的切線BFAD的延長線于點F

1)求證:DEO的切線.

2)試探究AE,AD,AB三者之間的等量關系.

3)若DE=3,O的半徑為5,求BF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,是半徑為上的定點,動點出發(fā),以的速度沿圓周逆時針運動,當點回到地立即停止運動.

1)如果,求點運動的時間;

2)如果點延長線上的一點,,那么當點運動的時間為時,判斷直線的位置關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù) (a 0) x 軸交于 A、C 兩點,與 y 軸交于點 B,P 拋物線的頂點,連接 AB,已知 OAOC=1:3.

1)求 A、C 兩點坐標;

2)過點 B BD∥x 軸交拋物線于 D,過點 P PE∥AB x 軸于 E,連接 DE,

E 坐標;

tan∠BPM=,求拋物線的解析式.

查看答案和解析>>

同步練習冊答案