【題目】永農(nóng)化工廠以每噸800元的價(jià)格購(gòu)進(jìn)一批化工原料,加工成化工產(chǎn)品進(jìn)行銷售,已知每1噸化工原料可以加工成化工產(chǎn)品0.8噸,該廠預(yù)計(jì)銷售化工產(chǎn)品不超過50噸時(shí)每噸售價(jià)為1600元,超過50噸時(shí),每超過1噸產(chǎn)品,銷售所有的化工產(chǎn)品每噸價(jià)格均會(huì)降低4元,設(shè)該化工廠生產(chǎn)并銷售了x噸化工產(chǎn)品.
(1)用x的代數(shù)式表示該廠購(gòu)進(jìn)化工原料 噸;
(2)當(dāng)x>50時(shí),設(shè)該廠銷售完化工產(chǎn)品的總利潤(rùn)為y,求y關(guān)于x的函數(shù)關(guān)系式;
(3)如果要求總利潤(rùn)不低于38400元,那么該廠購(gòu)進(jìn)化工原料的噸數(shù)應(yīng)該控制在什么范圍?
【答案】(1)x;(2)y=﹣4x2+800x;(3)如果要求總利潤(rùn)不低于38400元,那么該廠購(gòu)進(jìn)化工原料的噸數(shù)應(yīng)該控制在100噸~150噸范圍內(nèi).
【解析】
(1)根據(jù)“每1噸化工原料可以加工成化工產(chǎn)品0.8噸”,即可求出;
(2)根據(jù)總利潤(rùn)=總售價(jià)-總成本即可求出y關(guān)于x的函數(shù)關(guān)系式;
(3)先求出y=38400元時(shí),x的值,然后根據(jù)二次函數(shù)圖象的開口方向和增減性即可求出x的取值范圍.
(1)x÷0.8=x噸,
故答案為:x;
故答案為:x;
(2)根據(jù)題意得,y=x[1600﹣4(x﹣50)]﹣x800=﹣4x2+800x,
則y關(guān)于x的函數(shù)關(guān)系式為:y=﹣4x2+800x;
(3)當(dāng)y=38400時(shí),﹣4x2+800x=38400,
x2﹣200x+9600=0,
(x﹣120)(x﹣80)=0,
x=120或80,
∵﹣4<0,
∴當(dāng)y≥38400時(shí),80≤x≤120,
∴100≤x≤150,
∴如果要求總利潤(rùn)不低于38400元,那么該廠購(gòu)進(jìn)化工原料的噸數(shù)應(yīng)該控制在100噸~150噸范圍內(nèi).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),設(shè)點(diǎn)P的坐標(biāo)為(x,y),當(dāng)x<0時(shí),點(diǎn)P的變換點(diǎn)P′的坐標(biāo)為(y,﹣x);當(dāng)x≥0時(shí),點(diǎn)P的變換點(diǎn)P'的坐標(biāo)為(﹣x,y).
(1)點(diǎn)A(1,2)的變換點(diǎn)A'的坐標(biāo)是 ;
(2)點(diǎn)B(﹣2,3)的變換點(diǎn)B′在反比例函數(shù)y=的圖象上,則k= ,∠BOB'的大小是 °;
(3)點(diǎn)P在拋物線y=﹣(x﹣2n)2+3上,點(diǎn)P的變換P′的坐標(biāo)是(﹣4,﹣n),求n的值.
(4)點(diǎn)P在拋物線y=﹣x2﹣4x+1的圖象上,以線段PP′為對(duì)角線作正方形PMP'N,設(shè)點(diǎn)P的橫坐標(biāo)為m,當(dāng)正方形PMP′N的對(duì)角線垂直于x軸時(shí),直接寫出m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的正方形網(wǎng)格中,△ABC的頂點(diǎn)均在格點(diǎn)上,請(qǐng)?jiān)谒o的平面直角坐標(biāo)系中按要求作圖并完成填空:
(1)作出△ABC關(guān)于原點(diǎn)O成中心對(duì)稱的△A1B1C1,寫出點(diǎn)A1的坐標(biāo)_______.
(2)作出△A1B1C1繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°的△A2B2C2,寫出線段C1C2的長(zhǎng)度_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一副撲克牌中點(diǎn)數(shù)為“2”、“3”、“4”、“6”的四張牌背面朝上洗勻,先從中抽出1張牌,記錄下牌面點(diǎn)數(shù)為x,再?gòu)挠嘞碌?/span>3張牌中抽出1張牌,記錄下牌面點(diǎn)數(shù)為y.設(shè)點(diǎn)P的坐標(biāo)為(x,y).
(1)請(qǐng)用表格或樹狀圖列出點(diǎn)P所有可能的坐標(biāo).
(2)求點(diǎn)P在拋物線y=x2+x上的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知拋物線和直線l:y=kx+b,點(diǎn)A(-3,-3),B(1,-1)均在直線l上.
(1)若拋物線C與直線l有交點(diǎn),求a的取值范圍;
(2)當(dāng)a=-1,二次函數(shù)的自變量x滿足m≤x≤m+2時(shí),函數(shù)y的最大值為-4,求m的值;
(3)若拋物線C與線段AB有兩個(gè)不同的交點(diǎn),請(qǐng)直接寫出a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,內(nèi)接于,是的直徑,是上一點(diǎn),弦交于點(diǎn),弦于點(diǎn),連接,,且.
(1)求證:;
(2)若,,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】濟(jì)南國(guó)際滑雪自建成以來,吸引大批滑雪愛好者,一滑雪者從山坡滑下,測(cè)得滑行距離y(單位:m)與滑行時(shí)間x(單位:s)之間的關(guān)系可以近似的用二次函數(shù)來表示.
滑行時(shí)間x/s | 0 | 1 | 2 | 3 | … |
滑行距離y/m | 0 | 4 | 12 | 24 | … |
(1)根據(jù)表中數(shù)據(jù)求出二次函數(shù)的表達(dá)式.現(xiàn)測(cè)量出滑雪者的出發(fā)點(diǎn)與終點(diǎn)的距離大約840m,他需要多少時(shí)間才能到達(dá)終點(diǎn)?
(2)將得到的二次函數(shù)圖象補(bǔ)充完整后,向左平移2個(gè)單位,再向下平移5個(gè)單位,求平移后的函數(shù)表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)的圖象與軸交于兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),與軸交于點(diǎn)為該二次函數(shù)在第一象限內(nèi)的一點(diǎn),連接,交于點(diǎn),則的最大值為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一艘游輪在A處測(cè)得北偏東45°的方向上有一燈塔B.游輪以20海里/時(shí)的速度向正東方向航行2小時(shí)到達(dá)C處,此時(shí)測(cè)得燈塔B在C處北偏東15°的方向上,求A處與燈塔B相距多少海里?(結(jié)果精確到1海里,參考數(shù)據(jù):≈1.41,≈1.73)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com