如圖,在四邊形ABCD中,∠BAD=∠C=90°,AB=AD,AE⊥BC于E,△BEA旋轉(zhuǎn)后能與△DFA重合.
(1)△BEA繞______點______時針旋轉(zhuǎn)______度能與△DFA重合;
(2)若AE=
6
cm,求四邊形AECF的面積.
(1)△BEA繞A點逆(或順)時針旋轉(zhuǎn)90度(或270度)能與△DFA重合;
故答案為:A,逆(或順);90(或270度);

(2)∵AE⊥BC,
∴∠AEB=∠AEC=90°,
∵AB=AD,△BEA旋轉(zhuǎn)后能與△DFA重合,
∴△ADF≌△ABE,
∴∠AEB=∠F,AE=AF,
∵∠C=90°,
∴∠AEC=∠C=∠F=90°,
∴四邊形AECF是矩形,
又∵AE=AF,
∴矩形AECF是正方形,
∵AE=
6
cm,
∴四邊形AECF的面積為(
6
2=6(cm2).
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,四邊形ABCD和四邊形CDFE是邊長相等的兩個正方形,其中A、D、F和B、C、E各成一直線,將正方形ABCD繞著一點旋轉(zhuǎn)一定角度后與正方形CDFE重合,這樣的旋轉(zhuǎn)中心共有______個.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

先將一矩形ABCD置于直角坐標系中,使點A與坐標系的原點重合,邊AB,AD分別落在x軸、y軸上(如圖1),再將此矩形在坐標平面內(nèi)按逆時針方向繞原點旋轉(zhuǎn)30°(如圖2),若AB=4,BC=3,則圖1和圖2中點B點的坐標為______,點C的坐標______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖1、2是兩個相似比為1:
2
的等腰直角三角形,將兩個三角形如圖3放置,小直角三角形的斜邊與大直角三角形的一直角邊重合.
(1)在圖3中,繞點D旋轉(zhuǎn)小直角三角形,使兩直角邊分別與AC、BC交于點E,F(xiàn),如圖4.求證:AE2+BF2=EF2;
(2)若在圖3中,繞點C旋轉(zhuǎn)小直角三角形,使它的斜邊和CD延長線分別與AB交于點E、F,如圖5,此時結論AE2+BF2=EF2是否仍然成立?若成立,請給出證明;若不成立,請說明理由.


(3)如圖6,在正方形ABCD中,E、F分別是邊BC、CD上的點,滿足△CEF的周長等于正方形ABCD的周長的一半,AE、AF分別與對角線BD交于M、N,試問線段BM、MN、DN能否構成三角形的三邊長?若能,指出三角形的形狀,并給出證明;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

在△ABC中,∠ACB為銳角,點D為射線BC上一動點,連接AD,將線段AD繞點A逆時針旋轉(zhuǎn)90°得到AE,連接EC.
(1)如果AB=AC,∠BAC=90°
①當點D在線段BC上時(不與點B重合),如圖1,請你判斷線段CE,BD之間的位置關系和數(shù)量關系(直接寫出結論);
②當點D在線段BC的延長線上時,請你在圖2中畫出圖形,并判斷①中的結論是否仍然成立,并證明你的判斷.
(2)如圖3,若點D在線段BC上運動,DF⊥AD交線段CE于點F,且∠ACB=45°,AC=3
2
,試求線段CF長的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖小正六邊形的邊長是大六邊形的一半,O是小正六邊形的中心,A是小正六邊形的一個頂點.若小正六邊形沿大六邊形內(nèi)側(cè)滾動一周,回到原位置,則OA轉(zhuǎn)動的角度大小為( 。
A.240°B.360°C.540°D.720°

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

在平面直角坐標系中,將線段OA繞原點O逆時針旋轉(zhuǎn)90°,記點A(-1,
3
)的對應點為A1,則A1的坐標為______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖所示,以點O為旋轉(zhuǎn)中心,將∠1按順時針方向旋轉(zhuǎn)110°得到∠2,若∠1=40°,則∠2的余角為______度.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,△ABC是由△EBD旋轉(zhuǎn)得到的,則旋轉(zhuǎn)中心是( 。
A.點BB.點CC.點DD.點A

查看答案和解析>>

同步練習冊答案