【題目】如圖,在平行四邊形中,、是對角線上的兩點且,下列說法中正確的是(

;②;③;④四邊形為平行四邊形;⑤;⑥

A.①⑥B.①②④⑥C.①②③④D.①②④⑤⑥

【答案】D

【解析】

先根據(jù)全等三角形進行證明,即可判斷①和②,然后作輔助線,推出OD=OF,得出四邊形BEDF是平行四邊形,求出BM=DM即可判斷④和⑤,最后根據(jù)AE=CF,即可判斷⑥.

①∵四邊形ABCD是平行四邊形,

∴AB∥DC,AB=DC,

∴∠BAC=∠ADC,

在△ABE和△DFC中

∴△ABE≌△DFC(SAS),

∴BE=DF,

故①正確.

②∵△ABE≌△DFC,

∴∠AEB=∠DFC,

∴∠BEF=∠DFE,

∴BE∥DF,

故②正確.

③根據(jù)已知的條件不能推AB=DE,故③錯誤.

④連接BD交AC于O,過D作DM⊥AC于M,過B作BN⊥AC于N,

∵四邊形ABCD是平行四邊形,

∴DO=BO,OA=OC,

∵AE=CF,

∴OE=OF,

∴四邊形BEDF是平行四邊形,

故④正確.

⑤∵BN⊥AC,DM⊥AC,

∴∠BNO=∠DMO=90°,

在△BNO和△DMO中

,

故⑤正確.

⑥∵AE=CF,

∴AE+EF=CF+EF,

∴AF=CE,

故⑥正確.

故答案是D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,請在下列四個關(guān)系中,選出兩個恰當(dāng)?shù)年P(guān)系作為條件,推出四邊形ABCD是平行四邊形,并予以證明.關(guān)系:①ADBC;②ABCD;③∠A=∠C;④∠B+∠C180°

1)寫出所有成立的情況(只需填寫序號);

2)選擇其中一種證明.

已知:在四邊形ABCD中, ;

求證:四邊形ABCD是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】《如果想毀掉一個孩子,就給他一部手機!》這是微信朋友圈熱傳的一篇文章.國際上,法國教育部宣布從20189月新學(xué)期起,小學(xué)和初中禁止學(xué)生使用手機.為了解學(xué)生手機使用情況,某學(xué)校開展了“手機伴我健康行”主題活動,他們隨機抽取部分學(xué)生進行“使用手機目的”和“每周使用手機的時間”的問卷調(diào)查,并繪制成如圖所示的統(tǒng)計圖,已知“查資料”的人數(shù)是人.

請你根據(jù)以上信息解答下列問題:

求出本次隨機抽取的學(xué)生共有多少人;

在扇形統(tǒng)計圖中,“玩游戲”對應(yīng)的百分比為______________,圓心角度數(shù)是_______________度;

補全條形統(tǒng)計圖;

該校共有學(xué)生人,估計每周使用手機時間在小時以上(不含小時)的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】己知,滿足點在軸的負半軸上,直角頂點軸上,點軸上方.

如圖1所示,若點與原點重合,點的坐標(biāo)是,則點的坐標(biāo)是 ;

如圖2所示,若點的坐標(biāo)是,過點軸于,請求出點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一條不完整的數(shù)軸上從左到右有點A,B,C,其中AB=2,BC=1,如圖所示,設(shè)點A,B,C所對應(yīng)數(shù)的和是p.
(1)若以B為原點,寫出點A,C所對應(yīng)的數(shù),并計算p的值;若以C為原點,p又是多少?
(2)若原點O在圖中數(shù)軸上點C的右邊,且CO=28,求p.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,EF是四邊形ABCD對角線AC上的兩點,ADBCDFBE,AE=CF

求證:(1AFD≌△CEB;

2)四邊形ABCD是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】請根據(jù)圖示的對話解答下列問題.

求:(1)a,b的值;

(2)8﹣a+b﹣c的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c (a、b、c為常數(shù)且a≠0)中的x與y的部分對應(yīng)值如下表,

x

-3

-2

-1

0

1

2

3

4

5

y

12

5

0

-3

-4

-3

0

5

12

下列四個結(jié)論:
①二次函數(shù)y=ax2+bx+c 有最小值,最小值為-3;
②拋物線與y軸交點為(0,-3);
③二次函數(shù)y=ax2+bx+c 的圖像對稱軸是x=1;
④本題條件下,一元二次方程ax2+bx+c的解是x1=-1,x2=3.
其中正確結(jié)論的個數(shù)是( )
A.4
B.3
C.2
D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊三角形中,在邊上取兩點、,使.若,, 則以,為邊長的三角形的形狀為(

A.銳角三角形B.直角三角形C.鈍角三角形D.,,的值而定

查看答案和解析>>

同步練習(xí)冊答案