【題目】用直尺和圓規(guī)作一個(gè)角等于已知角,如圖,能得出∠A′O′B′=∠AOB的依據(jù)是(
A.(SAS)
B.(SSS)
C.(ASA)
D.(AAS)

【答案】B
【解析】解:作圖的步驟: ①以O(shè)為圓心,任意長為半徑畫弧,分別交OA、OB于點(diǎn)C、D;
②任意作一點(diǎn)O′,作射線O′A′,以O(shè)′為圓心,OC長為半徑畫弧,交O′A′于點(diǎn)C′;
③以C′為圓心,CD長為半徑畫弧,交前弧于點(diǎn)D′;
④過點(diǎn)D′作射線O′B′.
所以∠A′O′B′就是與∠AOB相等的角;
作圖完畢.
在△OCD與△O′C′D′,
,
∴△OCD≌△O′C′D′(SSS),
∴∠A′O′B′=∠AOB,
顯然運(yùn)用的判定方法是SSS.
故選:B.
我們可以通過其作圖的步驟來進(jìn)行分析,作圖時(shí)滿足了三條邊對應(yīng)相等,于是我們可以判定是運(yùn)用SSS,答案可得.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線AB,CD相交于點(diǎn)O,射線OM平分∠AOC,ON⊥OM,若∠AOM=35°,則∠CON的度數(shù)為( 。
A.35°
B.45°
C.55°
D.65°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,C是線段BE上一點(diǎn),以BC、CE為邊分別在BE的同側(cè)作等邊△ABC和等邊△DCE,連結(jié)AE、BD.
(1)求證:BD=AE;
(2)如圖2,若M、N分別是線段AE、BD上的點(diǎn),且AM=BN,請判斷△CMN的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列命題中,真命題是( .

A.兩條對角線垂直且相等的四邊形是正方形

B.兩條對角線互相垂直的四邊形是菱形

C.兩條對角線互相平分且相等的四邊形是矩形

D.一組對邊平行,另一組對邊相等的四邊形是平行四邊形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線與坐標(biāo)軸分別交于點(diǎn)A(0,8)、B(8,0)和點(diǎn)E,動(dòng)點(diǎn)C從原點(diǎn)O開始沿OA方向以每秒1個(gè)單位長度移動(dòng),動(dòng)點(diǎn)D從點(diǎn)B開始沿BO方向以每秒1個(gè)單位長度移動(dòng),動(dòng)點(diǎn)C、D同時(shí)出發(fā),當(dāng)動(dòng)點(diǎn)D到達(dá)原點(diǎn)O時(shí),點(diǎn)C、D停止運(yùn)動(dòng).

(1)直接寫出拋物線的解析式: ;

(2)求△CED的面積S與D點(diǎn)運(yùn)動(dòng)時(shí)間t的函數(shù)解析式;當(dāng)t為何值時(shí),△CED的面積最大?最大面積是多少?

(3)當(dāng)△CED的面積最大時(shí),在拋物線上是否存在點(diǎn)P(點(diǎn)E除外),使△PCD的面積等于△CED的最大面積?若存在,求出P點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,梯形OABC中,O為直角坐標(biāo)系的原點(diǎn),A、B、C的坐標(biāo)分別為(14,0)、(14,3)、(4,3).點(diǎn)P、Q同時(shí)從原點(diǎn)出發(fā),分別作勻速運(yùn)動(dòng),其中點(diǎn)P沿OA向終點(diǎn)A運(yùn)動(dòng),速度為每秒1個(gè)單位;點(diǎn)Q沿OC、CB向終點(diǎn)B運(yùn)動(dòng),當(dāng)這兩點(diǎn)中有一點(diǎn)到達(dá)自己的終點(diǎn)時(shí),另一點(diǎn)也停止運(yùn)動(dòng).設(shè)P從出發(fā)起運(yùn)動(dòng)了t秒.

(1)如果點(diǎn)Q的速度為每秒2個(gè)單位,①試分別寫出這時(shí)點(diǎn)Q在OC上或在CB上時(shí)的坐標(biāo)(用含t的代數(shù)式表示,不要求寫出t的取值范圍);

②求t為何值時(shí),PQ∥OC?

(2)如果點(diǎn)P與點(diǎn)Q所經(jīng)過的路程之和恰好為梯形OABC的周長的一半,①試用含t的代數(shù)式表示這時(shí)點(diǎn)Q所經(jīng)過的路程和它的速度;

②試問:這時(shí)直線PQ是否可能同時(shí)把梯形OABC的面積也分成相等的兩部分?如有可能,求出相應(yīng)的t的值和P、Q的坐標(biāo);如不可能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,AB的垂直平分線交AB于M,交AC于N.
(1)若∠ABC=70°,則∠MNA的度數(shù)是
(2)連接NB,若AB=8cm,△NBC的周長是14cm. ①求BC的長;
②在直線MN上是否存在P,使由P、B、C構(gòu)成的△PBC的周長值最?若存在,標(biāo)出點(diǎn)P的位置并求△PBC的周長最小值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠B=40°,∠C=70°,AD是△BAC的角平分線,求∠ADC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)P(2,﹣4)關(guān)于原點(diǎn)對稱的點(diǎn)的坐標(biāo)是(  )

A. (﹣2,4) B. (2,4) C. (﹣2,﹣4) D. (﹣4,2)

查看答案和解析>>

同步練習(xí)冊答案