【題目】如圖,在數(shù)軸上A點表示數(shù)a,B點表示數(shù)b,且a、b滿足|a+2|+(b6)2=0
(1)點A表示的數(shù)為 ;點B表示的數(shù)為 ;
(2)若點A與點C之間的距離表示為AC,點B與點C之間的距離表示為BC,請在數(shù)軸上找一點C,使AC=3BC,則C點表示的數(shù) ;
(3)若在原點O處放一擋板,一小球甲從點A處以1個單位/秒的速度向左運動;同時另一小球乙從點B處以2個單位/秒的速度也向左運動,在碰到擋板后(忽略球的大小,可看作一點)以原來的速度向相反的方向運動,設(shè)運動的時間為t(秒),請分別表示出甲、乙兩小球到原點的距離(用t表示).
【答案】(1)2、6;(2)4或10;(3)當(dāng)0<t3時,乙到原點的距離:62t(0t3);當(dāng)t>3時,乙球到原點的距離為:2t6(t>3).
【解析】
(1)根據(jù)非負數(shù)的性質(zhì)求得a=-2,b=6;
(2)分C點在線段AB上和線段AB的延長線上兩種情況討論即可求解;
(3)甲球到原點的距離=甲球運動的路程+OA的長,乙球到原點的距離分兩種情況:(Ⅰ)當(dāng)0<t≤3時,乙球從點B處開始向左運動,一直到原點O,此時OB的長度-乙球運動的路程即為乙球到原點的距離;(Ⅱ)當(dāng)t>3時,乙球從原點O處開始向右運動,此時乙球運動的路程-OB的長度即為乙球到原點的距離.
(1)∵|a+2|+|b6|=0,
∴a+2=0,b6=0,
解得,a=2,b=6,
∴點A表示的數(shù)為2,點B表示的數(shù)為6.
故答案為:2、6;
(2)設(shè)數(shù)軸上點C表示的數(shù)為c.
∵AC=3BC,
∴|ca|=3|cb|,即|c+2|=3|c6|.
∵AC=3BC>BC,
∴點C不可能在BA的延長線上,則C點可能在線段AB上和線段AB的延長線上。
①當(dāng)C點在線段AB上時,則有2c6,
得c+2=3(6c),解得c=4;
②當(dāng)C點在線段AB的延長線上時,則有c>6,
得c+2=3(c6),解得c=10.
故當(dāng)AC=3BC時,c=4或c=10;
故答案為:4或10;
(3)∵甲球運動的路程為:1t=t,OA=2,
∴甲球與原點的距離為:t+2;
乙球到原點的距離分兩種情況:
①當(dāng)0<t3時,乙球從點B處開始向左運動,一直到原點O,
∵OB=6,乙球運動的路程為:2t=2t,
乙到原點的距離:62t(0t3)
②當(dāng)t>3時,乙球從原點O處開始一直向右運動,
此時乙球到原點的距離為:2t6(t>3).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把下列各數(shù)分別填在相應(yīng)的集合里:
-2.4,3,,,0.333…,-(2.28),3.14,,1.010010001…(相鄰兩個1之間0的個數(shù)增加1),.
(1)正有理數(shù)集合{ ……}
(2)整數(shù)集合{ ……}
(3)負分?jǐn)?shù)集合{ ……}
(4)無理數(shù)集合{ ……}
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線與y軸交于點.
(1)求拋物線的解析式;
(2)求拋物線與坐標(biāo)軸的交點坐標(biāo);
(3)①當(dāng)x取什么值時, ? 當(dāng)x取什么值時,y的值隨x的增大而減。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】你能很快算出嗎?
為了解決這個問題,我們考察個位上的數(shù)為5的正整數(shù)的平方,任意一個個位數(shù)為5的正整數(shù)可寫成10n+5(n為正整數(shù)),即求的值,試分析,2,3……這些簡單情形,從中探索其規(guī)律.
⑴通過計算,探索規(guī)律:
可寫成;
可寫成;
可寫成;
可寫成;………………
可寫成________________________________
可寫成________________________________
⑵根據(jù)以上規(guī)律,試計算=
=
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直線y=kx+b與反比例函數(shù)y=(x>0)的圖象分別交于點 A(m,3)和點B(6,n),與坐標(biāo)軸分別交于點C和點D.
(1)求直線AB的解析式;
(2)若點P是x軸上一動點,當(dāng)△COD與△ADP相似時,求點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,正方形ABCO的對角線BO在x 軸上,若正方形ABCO的邊長為,點B在x負半軸上,反比例函數(shù)的圖象經(jīng)過C點.
(1)求該反比例函數(shù)的解析式;
(2)當(dāng)函數(shù)值>-2時,請直接寫出自變量x的取值范圍;
(3)若點P是反比例函數(shù)上的一點,且△PBO的面積恰好等于正方形ABCO的面積,求點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】彩虹服裝店用元購進件襯衣,很快全部售完.服裝店老板以每件元的價格為標(biāo)準(zhǔn),將超出的記為正數(shù),不足的記為負數(shù),記錄如下:,,,,,,,(單位:元).他賣完這件襯衣后是盈利還是虧損?盈利(或虧損)了多少錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,六邊形ABCDEF的內(nèi)角都相等, ,則下列結(jié)論成立的個數(shù)是
; ; ; 四邊形ACDF是平行四邊形; 六邊形ABCDEF既是中心對稱圖形,又是軸對稱圖形.
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形 ABCD 的邊長為 5,點 M 是邊 BC 上的點,DE⊥AM 于點 E,BF∥DE,交 AM 于點 F.若E 是 AF 的中點,則 DE 的長為( )
A.B.2C.4D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com