【題目】如圖,RtABC,ABC=90°,AB=BC=,ABC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)60°,得到MNC,連接BM,BM的長(zhǎng)是__.

【答案】﹢1

【解析】

試題首先考慮到BE所在的三角形并不是特殊三角形,所以猜想到要求BE,可能需要構(gòu)造直角三角形.由旋轉(zhuǎn)的性質(zhì)可知,AC=AE,∠CAE=60°,故△ACE是等邊三角形,可證明△ABE△CBE全等,可得到∠ABE=45°,∠AEB=30°,再證△AFB△AFE是直角三角形,然后在根據(jù)勾股定理求解

解:連結(jié)CE,設(shè)BEAC相交于點(diǎn)F,如下圖所示,

∵Rt△ABC中,AB=BC∠ABC=90°

∴∠BCA=∠BAC=45°

∵Rt△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°Rt△ADE重合,

∴∠BAC=∠DAE=45°,AC=AE

旋轉(zhuǎn)角為60°

∴∠BAD=∠CAE=60°

∴△ACE是等邊三角形

∴AC=CE=AE=4

△ABE△CBE中,

∴△ABE≌△CBE SSS

∴∠ABE=∠CBE=45°,∠CEB=∠AEB=30°

△ABF中,∠BFA=180°﹣45°﹣45°=90°

∴∠AFB=∠AFE=90°

Rt△ABF中,由勾股定理得,

BF=AF==2

又在Rt△AFE中,∠AEF=30°∠AFE=90°

FE=AF=2

∴BE=BF+FE=2+2

故,本題的答案是:2+2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線經(jīng)過(guò)點(diǎn)A-3,4).

1)求b的值;

2過(guò)點(diǎn)A軸的平行線交拋物線于另一點(diǎn)B,在直線AB上任取一點(diǎn)P,作點(diǎn)A關(guān)于直線OP的對(duì)稱(chēng)點(diǎn)C

①當(dāng)點(diǎn)C恰巧落在軸時(shí),求直線OP的表達(dá)式

②連結(jié)BC,求BC的最小值

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某班將舉行“數(shù)學(xué)知識(shí)競(jìng)賽”活動(dòng),班長(zhǎng)安排小明購(gòu)買(mǎi)獎(jiǎng)品,下面兩圖是小明買(mǎi)回獎(jiǎng)品時(shí)與班長(zhǎng)的對(duì)話情境:

請(qǐng)根據(jù)上面的信息,解決問(wèn)題:

(1)試計(jì)算兩種筆記本各買(mǎi)了多少本?

(2)請(qǐng)你解釋?zhuān)盒∶鳛槭裁床豢赡苷一?/span>68元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線過(guò)點(diǎn), 為線段OA上一個(gè)動(dòng)點(diǎn)(點(diǎn)M與點(diǎn)A不重合),過(guò)點(diǎn)M作垂直于x軸的直線與直線AB和拋物線分別交于點(diǎn)P、N

(1)求直線AB的解析式和拋物線的解析式;

(2)如果點(diǎn)PMN的中點(diǎn),那么求此時(shí)點(diǎn)N的坐標(biāo);

(3)如果以B,P,N為頂點(diǎn)的三角形與相似,求點(diǎn)M的坐標(biāo)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將平行四邊形 ABCD 沿對(duì)角線 BD 折疊,使點(diǎn) A 落在A′處,若∠1=∠250°,則∠A′的度數(shù)為(

A.100°B.105°C.110°D.115°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)Aa﹣2b2﹣4ab)在拋物線y=x2+4x+10上,則點(diǎn)A關(guān)于拋物線對(duì)稱(chēng)軸的對(duì)稱(chēng)點(diǎn)坐標(biāo)為( 。

A. ﹣3,7 B. ﹣1,7 C. ﹣4,10 D. 0,10

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)G,D,C在直線a上,點(diǎn)E,F,AB在直線b上,若ab,RtGEF從如圖所示的位置出發(fā),沿直線b向右勻速運(yùn)動(dòng),直到EGBC重合.運(yùn)動(dòng)過(guò)程中GEF與矩形ABCD重合部分的面積(S)隨時(shí)間(t)變化的圖象大致是(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】當(dāng)a、b都是實(shí)數(shù),且滿足2ab6,就稱(chēng)點(diǎn)P為完美點(diǎn).

1)判斷點(diǎn)A23)是否為完美點(diǎn)?

2)完美點(diǎn)一定不在第   象限;

3)已知關(guān)于mn的方程組,當(dāng)t為何值時(shí),以方程組的解為坐標(biāo)的點(diǎn)B是完美點(diǎn),請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校為了豐富學(xué)生課余生活,開(kāi)展了第二課堂的活動(dòng),推出了以下四種選修課程: A :繪畫(huà), B :唱歌,C :演講,D :十字繡,學(xué)校規(guī)定:每個(gè)學(xué)生都必須報(bào)名且只能選擇其中的一個(gè)課程,學(xué)校隨機(jī)抽查了部分學(xué)生,對(duì)他們選擇的課程情況進(jìn)行了統(tǒng)計(jì),并繪制了如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)結(jié)合統(tǒng)計(jì)圖中的信息,解決下列問(wèn)題:

1)這次學(xué)校抽查的學(xué)生人數(shù)是

2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;

3)如果該校共有1000名學(xué)生,請(qǐng)你估計(jì)該校報(bào) D 的學(xué)生約有多少人?

查看答案和解析>>

同步練習(xí)冊(cè)答案