我們?nèi)菀装l(fā)現(xiàn):反比例函數(shù)的圖象是一個中心對稱圖形.你可以利用這一結(jié)論解決問題.
如圖,在同一直角坐標(biāo)系中,正比例函數(shù)的圖象可以看作是:將軸所在的直線繞著原點逆時針旋轉(zhuǎn)α度角后的圖形.若它與反比例函數(shù)的圖象分別交于第一、三象限的點、,已知點、.
(1)直接判斷并填寫:不論α取何值,四邊形的形狀一定是 ;
(2)①當(dāng)點為時,四邊形是矩形,試求、α、和有值;
②觀察猜想:對①中的值,能使四邊形為矩形的點共有幾個?(不必說理)
(3)試探究:四邊形能不能是菱形?若能, 直接寫出B點的坐標(biāo), 若不能, 說明理由.
解:(1)平行四邊形
(2)①∵點在的圖象上,∴
∴
過作,則
在中,
α=30° ∴
又∵點B、D是正比例函數(shù)與反比例函數(shù)圖象的交點,
∴點B、D關(guān)于原點O成中心對稱
∴OB=OD=
∵四邊形為矩形,且
∴∴;
②能使四邊形為矩形的點B共有2個;
(3)四邊形不能是菱形.
法一:∵點、的坐標(biāo)分別為、
∴四邊形的對角線在軸上.
又∵點、分別是正比例函數(shù)與反比例函數(shù)在第一、三象限的交點.
∴對角線與不可能垂直.
∴四邊形不能是菱形
法二:若四邊形ABCD為菱形,則對角線AC⊥BD,且AC與BD互相平分,
因為點A、C的坐標(biāo)分別為(-m,0)、(m,0)
所以點A、C關(guān)于原點O對稱,且AC在x軸上.
所以BD應(yīng)在y軸上,這與“點B、D分別在第一、三象限”矛盾,
所以四邊形ABCD不可能為菱形.
科目:初中數(shù)學(xué) 來源: 題型:
| ||
x |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
1 | x |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013屆江西省吉安朝宗實驗學(xué)校九年級第一次段考數(shù)學(xué)試卷(帶解析) 題型:解答題
我們?nèi)菀装l(fā)現(xiàn):反比例函數(shù)的圖象是一個中心對稱圖形,你可以利用這一結(jié)論解決問題。如圖,在同一直角坐標(biāo)系中,正比例函數(shù)的圖象可以看作是將x軸所在的直線繞著原點O逆時針旋轉(zhuǎn)度后的圖形。它與反比例函數(shù)的圖象分別交于第一、三象限的點B、D,已知點A(-m,0)、C(m,0)。
(1)判斷并填寫,不論取何值,四邊形ABCD的形狀一定是______;
(2)①當(dāng)點B坐標(biāo)為(p,1)時,四邊形ABCD是矩形,試求p、和m的值;
②觀察猜想:對①中的m值,能使四邊形ABCD為矩形的點B共有幾個?(不必說理)
(3)試探究:四邊形ABCD能不能是菱形?若能,直接寫出B點的坐標(biāo);若不能,說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年江西省九年級第一次段考數(shù)學(xué)試卷(解析版) 題型:解答題
我們?nèi)菀装l(fā)現(xiàn):反比例函數(shù)的圖象是一個中心對稱圖形,你可以利用這一結(jié)論解決問題。如圖,在同一直角坐標(biāo)系中,正比例函數(shù)的圖象可以看作是將x軸所在的直線繞著原點O逆時針旋轉(zhuǎn)度后的圖形。它與反比例函數(shù)的圖象分別交于第一、三象限的點B、D,已知點A(-m,0)、C(m,0)。
(1)判斷并填寫,不論取何值,四邊形ABCD的形狀一定是______;
(2)①當(dāng)點B坐標(biāo)為(p,1)時,四邊形ABCD是矩形,試求p、和m的值;
②觀察猜想:對①中的m值,能使四邊形ABCD為矩形的點B共有幾個?(不必說理)
(3)試探究:四邊形ABCD能不能是菱形?若能,直接寫出B點的坐標(biāo);若不能,說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:福建省中考真題 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com