【題目】如圖,在△ABC中,AB=AC=10,點(diǎn)D是BC邊上的一動(dòng)點(diǎn)(不與B、C重合),∠ADE=∠B=∠α,DE交AB于點(diǎn)E,且tan∠α=0.75,有以下的結(jié)論:
①△DBE∽△ACD;②△ADE∽△ACD;③△BDE為直角三角形時(shí),BD為8或3.5;
④0<BE≤5.其中正確的結(jié)論是_______(填入正確結(jié)論的序號(hào))
【答案】①③
【解析】①∵AB=AC,∴∠B=∠C,又∵∠ADE=∠B∴∠ADC=180°﹣α﹣∠BDE,
∵∠BED=180°﹣α﹣∠BDE,∴∠BED=∠ADC∴△DBE∽△ACD,故①正確;
②∵∠B=∠C,∴∠C=∠ADE,不能得到△ADE∽△ACD;故②錯(cuò)誤,
③當(dāng)∠AED=90°時(shí),由①可知:△ADE∽△ABD,∴∠ADB=∠AED,
∵∠AED=90°,∴∠ADB=90°,即AD⊥BC,
∵AB=AC,∴BD=CD,∴∠ADE=∠B=α且cosα=0.8,AB=10,BD=8.
當(dāng)∠BDE=90°時(shí),易△BDE∽△CAD,∵∠BDE=90°,∴∠CAD=90°,
∵∠B=α且cosα=0.8.AB=10,∴cosC=0.8,∴CD=12.5,∴BD=BC﹣CD=3.5;故③正確.
④過A作AG⊥BC于G,∵cosα=0.8,∴BG=8,∴BC=16,易證得△BDE∽△CAD,
設(shè)BD=y,BE=x,∴ ,∴∴ ,整理得:y2﹣16y+64=64﹣10x,
即(y﹣8)2=64﹣10x,∴0<x≤6.4.故④錯(cuò)誤.故答案為:①③.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算:
(1)(3a+2b)(3a-2b)-(3a-2b)2
(2)(a-5) 2-(a+6)(a-6)
(3)(3x-2y)2-(2x-y)(x-y)
(4)(-4a)·(2a2+3a-1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為進(jìn)一步營造掃黑除惡專項(xiàng)斗爭的濃厚宣傳氛圍,推進(jìn)平安校園建設(shè),甲、乙兩所學(xué)校各租用一輛大巴車組織部分師生,分別從距目的地240千米和270千米的兩地同時(shí)出發(fā),前往“研學(xué)教育”基地開展掃黑除惡教育活動(dòng),已知乙校師生所乘大巴車的平均速度是甲校師生所乘大巴車的平均速度的1.5倍,甲校師生比乙校師生晚1小時(shí)到達(dá)目的地,分別求甲、乙兩所學(xué)校師生所乘大巴車的平均速度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知AB是⊙O的直徑,弦CD⊥AB于H,過CD延長線上一點(diǎn)E作⊙O的切線交AB的延長線于F,切點(diǎn)為G,連接AG交CD于K.
(1)如圖1,求證:KE=GE;
(2)如圖2,連接CABG,若∠FGB=∠ACH,求證:CA∥FE;
(3)如圖3,在(2)的條件下,連接CG交AB于點(diǎn)N,若sinE=,AK=,求CN的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某初級(jí)中學(xué)數(shù)學(xué)興趣小組為了了解本校學(xué)生的年齡情況,隨機(jī)調(diào)查了該校部分學(xué)生的年齡,整理數(shù)據(jù)并繪制如下不完整的統(tǒng)計(jì)圖.
依據(jù)以上信息解答以下問題:
(1)求樣本容量;
(2)直接寫出樣本容量的平均數(shù),眾數(shù)和中位數(shù);
(3)若該校一共有1800名學(xué)生,估計(jì)該校年齡在15歲及以上的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知在△ABC中,AB=AC,BD和CE分別是∠ABC和∠ACB的角平分線,且BD和CE相交于O點(diǎn).
(1)試說明△OBC是等腰三角形;
(2)連接OA,試判斷直線OA與線段BC的關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以AB為斜邊的Rt△ABC的每條邊為邊作三個(gè)正方形,分別是正方形ABMN,正方形BCPQ,正方形ACEF,且邊EF恰好經(jīng)過點(diǎn)N.若S3=S4=5,則S1+S5=_____.(注:圖中所示面積S表示相應(yīng)封閉區(qū)域的面積,如S3表示△ABC的面積)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】九年級(jí)(1)班現(xiàn)要從A、B兩位男生和C、D兩位女生中,選派學(xué)生代表本班參加全校“中華好詩詞”大賽.
(1)如果選派一位學(xué)生代表參賽,求選派到的代表是A的概率;
(2)如果選派兩位學(xué)生代表參賽,求恰好選派一男一女兩位同學(xué)參賽的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ACBD中,AC=6,BC=8,AD=2,BD=4,DE是△ABD的邊AB上的高,且DE=4,求△ABC的邊AB上的高.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com