(2012•莆田)如圖,某種新型導(dǎo)彈從地面發(fā)射點L處發(fā)射,在初始豎直加速飛行階段,導(dǎo)彈上升的高度y(km)與飛行時間x(s)之間的關(guān)系式為y=
1
18
x2+
1
6
x
 (0≤x≤10).發(fā)射3s后,導(dǎo)彈到達(dá)A點,此時位于與L同一水平面的R處雷達(dá)站測得AR的距離是2km,再過3s后,導(dǎo)彈到達(dá)B點.
(1)求發(fā)射點L與雷達(dá)站R之間的距離;
(2)當(dāng)導(dǎo)彈到達(dá)B點時,求雷達(dá)站測得的仰角(即∠BRL)的正切值.
分析:(1)在解析式中,把x=3代入函數(shù)解析式,即可求得AL的長,在直角△ALR中,利用勾股定理即可求得LR的長;
(2)在解析式中,把x=6代入函數(shù)解析式,即可求得AL的長,在直角△BLR中,根據(jù)正切函數(shù)的定義即可求解.
解答:解:(1)當(dāng)x=3時,y=
1
18
×9+
1
6
×3=1(km),
在直角△ALR中,LR=
AR2-AL2
=
22-12
=
3
(km).

(2)當(dāng)x=3+3=6時,BL=
1
18
×36+
1
6
×6=3,
在直角△BLR中,tan∠BRL=
BL
LR
=
3
3
=
3
點評:本題是二次函數(shù)與三角函數(shù)的綜合應(yīng)用,正確求得函數(shù)值,理解三角函數(shù)的定義是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•莆田)如圖,點C在以AB為直徑的半圓O上,延長BC到點D,使得CD=BC,過點D作DE⊥AB于點E,交AC于點F,點G為DF的中點,連接CG、OF、FB.
(1)求證:CG是⊙O的切線;
(2)若△AFB的面積是△DCG的面積的2倍,求證:OF∥BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•莆田)如圖,在平面直角坐標(biāo)系中,A(1,1),B(-1,1),C(-1,-2),D(1,-2).把一條長為2012個單位長度且沒有彈性的細(xì)線(線的粗細(xì)忽略不計)的一端固定在點A處,并按A-B-C-D-A-…的規(guī)律緊繞在四邊形ABCD的邊上,則細(xì)線另一端所在位置的點的坐標(biāo)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•莆田)如圖,△A′B′C′是由△ABC沿射線AC方向平移2cm得到,若AC=3cm,則A′C=
1
1
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•莆田)如圖,在平面直角坐標(biāo)系中,矩形OABC四個頂點的坐標(biāo)分別為O(0,0),A(0,3),B(6,3),C(6,0),拋物線y=ax2+bx+c(a≠0)過點A.

(1)求c的值;
(2)若a=-1,且拋物線與矩形有且只有三個交點A、D、E,求△ADE的面積S的最大值;
(3)若拋物線與矩形有且只有三個交點A、M、N,線段MN的垂直平分線l過點0,交線段BC于點F.當(dāng)BF=1時,求拋物線的解析式.

查看答案和解析>>

同步練習(xí)冊答案