【題目】如圖,設(shè) A 是由n×n 個有理數(shù)組成的n n 列的數(shù)表, 其中aij i,j =1,23,,n )表示位于第i 行第 j 列的數(shù),且aij 取值為 1 或-1.

a

a

a

a

a

a

a

a

a

對于數(shù)表 A 給出如下定義:記 xi 為數(shù)表 A 的第i 行各數(shù)之積,y j 為數(shù)表 A 的第 j 列各數(shù)之積.S = (x1+ x2++ x)+(y1+ y2+ y),將S 稱為數(shù)表 A 積和”.

1)當(dāng)n = 4 時,對如下數(shù)表 A,求該數(shù)表的積和S 的值;

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2)是否存在一個 3×3 的數(shù)表 A,使得該數(shù)表的積和S =0 ?并說明理由;

3)當(dāng)n =10 時,直接寫出數(shù)表 A 積和S 的所有可能的取值.

【答案】10;(2)不存在;(316,12,80,-4-8,-12-16,-20

【解析】

1)根據(jù)已知條件直接求解即可;

2)不存在AS3,3),使得S =0.可用反證法證明假設(shè)存在,得出矛盾,從而證明結(jié)論;

3)根據(jù)已知條件求出lA)關(guān)于ASn,n),(k=0,1,2,…,n)的關(guān)系式然后代入求值即可.

解:由題意得:(1S4 = (x1+ x2+x3+ x4)+(y1+ y2+y3+ y4)=(1-1+1+1)+(-1-1+1-1)=0

(2)不存在A∈S(3,3),使得S=0.
證明如下:
假設(shè)存在AS3,3),使得S=0
因為xiA)∈{1,-1},yjA)∈{1-1},(i,j=123),
所以x1A),,x3A);y1A),,y3A),這9個數(shù)中有31,3-1
M=x1A…x3Ay1A…y3A).
一方面,由于這9個數(shù)中有31,3-1,從而M=-1
另一方面,x1A…x3A)表示數(shù)表中所有元素之積(記這9個實數(shù)之積為m);y1A…y9A)也表示m,從而M=m2=1
①、②相矛盾,從而不存在AS33),使得S=lA=0

(3)i)對數(shù)表A0aiji,j=12,3,…,n),顯然lA0=2n
將數(shù)表A0中的a111變?yōu)?/span>-1,得到數(shù)表A1,顯然lA1=2n-4
將數(shù)表A1中的a221變?yōu)?/span>-1,得到數(shù)表A2,顯然lA2=2n-8
依此類推,將數(shù)表Ai-1中的akk1變?yōu)?/span>-1,得到數(shù)表Ak
即數(shù)表Ak滿足:a11=a22==akk=-11kn),其余aij=1
r1A=r2A==rkA=-1,C1A=C2A==CkA=-1
lAk=2[-1)×k+n-k]=2n-4k,其中k=1,2,…,n

當(dāng)n =10 時,數(shù)表 A 積和S 的所有可能的取值為:16,12,8,0,-4,-8,-12,-16,-20.

故答案為:(10;(2)不存在;(31612,80,-4,-8,-12-16,-20.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AB=BCBEAC于點E,ADBC于點D,∠BAD=45°,ADBE交于點F,連接CF.

(1)求證:BF=2AE;(2)若CD=1,求AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AD是△ABC的角平分線,DFAB,垂足為F,DE=DG,△ADG和△AED的面積分別為4028,則△EDF的面積為______ 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某地特色農(nóng)產(chǎn)品在國際市場上頗具競爭力,其中綠色蔬菜遠(yuǎn)銷日本和韓國等地上市時,若按市場價格10千克在新區(qū)收購了2000千克綠色蔬菜存放入冷庫中據(jù)預(yù)測,綠色蔬菜的市場價格每天每千克將上漲元,但冷庫存放這批綠色蔬菜時每天需要支出各種費(fèi)用合計340元,而且綠色蔬菜在冷庫中最多保存110天,同時,平均每天有6千克的綠色蔬菜損壞不能出售.

若存放x天后,將這批綠色蔬菜一次性出售,設(shè)這批綠色蔬菜的銷售總金額為y元,試寫出yx之間的函數(shù)關(guān)系式.

這批綠色蔬菜存放多少天后出售可獲得最大利潤?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在平面直角坐標(biāo)系中,已知點的坐標(biāo),過點作軸,垂足為點,過點作直線軸,點從點出發(fā)在軸上沿著軸的正方向運(yùn)動.

1)當(dāng)點運(yùn)動到點處,過點的垂線交直線于點,證明,并求此時點的坐標(biāo);

2)點是直線上的動點,問是否存在點,使得以為頂點的三角形和全等,若存在求點的坐標(biāo)以及此時對應(yīng)的點的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著通訊技術(shù)的迅猛發(fā)展,人與人之間的溝通方式更多樣、便捷.某校數(shù)學(xué)興趣小組設(shè)計了“你最喜歡的溝通方式”調(diào)查問卷(每人必選且只選一種),在全校范圍內(nèi)隨機(jī)調(diào)查了部分學(xué)生,將統(tǒng)計結(jié)果繪制了如下兩幅不完整的統(tǒng)計圖,請結(jié)合圖中所給的信息解答下列問題:

(1)這次統(tǒng)計共抽查了  名學(xué)生;在扇形統(tǒng)計圖中,表示“QQ”的扇形圓心角的度數(shù)為   ;

(2)將條形統(tǒng)計圖補(bǔ)充完整;

(3)該校共有1500名學(xué)生,請估計該校最喜歡用“微信”進(jìn)行溝通的學(xué)生有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD中,AE平分∠BADBC邊于EEFAECD邊于F,延長BA到點G,使AG=CF,連接GF,若BC=7DF=3,AE=,則GF的長為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某鄉(xiāng)鎮(zhèn)風(fēng)力資源豐富,為了實現(xiàn)低碳環(huán)保,該鄉(xiāng)鎮(zhèn)決定開展風(fēng)力發(fā)電,打算購買10臺風(fēng)力發(fā)電機(jī)組.現(xiàn)有A,B兩種型號機(jī)組,其中A型機(jī)組價格為12萬元/臺,月均發(fā)電量為2.4kwh;B型機(jī)組價格為10萬元/臺,月均發(fā)電量為2kwh.經(jīng)預(yù)算該鄉(xiāng)鎮(zhèn)用于購買風(fēng)力發(fā)電機(jī)組的資金不高于105萬元.

1)請你為該鄉(xiāng)鎮(zhèn)設(shè)計幾種購買方案;

2)如果該鄉(xiāng)鎮(zhèn)用電量不低于20.4kwh/月,為了節(jié)省資金,應(yīng)選擇那種購買方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:如果三角形有一邊上的中線長恰好等于這邊的長,那么這個三角形叫“恰等三角形”,這條中線叫“恰等中線”.

(直角三角形中的“恰等中線”)

(1)如圖1,在△ABC中,∠C=90°,AC,BC=2,AM為△ABC的中線.求證:AM是“恰等中線”.

(等腰三角形中的“恰等中線”)

2)已知,等腰△ABC是“恰等三角形”,ABAC20,求底邊BC的平方.

(一般三角形中的“恰等中線”)

3)如圖2,若AM是△ABC的“恰等中線”,則BC2,AB2,AC2之間的數(shù)量關(guān)系為

查看答案和解析>>

同步練習(xí)冊答案