精英家教網(wǎng)如圖,⊙O是邊長為2的等邊三角形ABC的內(nèi)切圓,則圖中陰影部分的面積為
 
分析:先求出三角形ABC的面積,從而求出內(nèi)切圓的半徑,進(jìn)而可求出圓的面積.圖中陰影部分的面積=S△ABC-S⊙O
解答:精英家教網(wǎng)解:連接OA,OD(AB上的內(nèi)切點(diǎn)).
由于等邊三角形的內(nèi)心就是它的外心,可得AD=
1
2
AB=1,∠OAB=
1
2
∠CAB=30°;
在Rt△OAD中,tan30°=
OD
AD
,即
3
3
=
OD
1
,得0D=
3
3

∴圖中陰影部分的面積等于S△ABC-S⊙O=
3
4
×22-π(
3
3
2=
3
-
1
3
π.
點(diǎn)評:本題考查等邊三角形的性質(zhì)及內(nèi)切圓的概念和計(jì)算.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,O是邊長為6的等邊三角形ABC內(nèi)的任意一點(diǎn),且OD∥BC,交AB于點(diǎn)D,OF∥AB,交AC于F,OE∥AC,交BC于E.則OD+OE+OF的值( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,△AOB是邊長為5的等邊三角形,則A,B兩點(diǎn)的坐標(biāo)分別是A
 
,B
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,△ABC是邊長為2
3
的等邊三角形,點(diǎn)E、F分別在CB和BC的延長線上,且∠EAF=120°,設(shè)BE=x,CF=y.求y與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•湘潭)如圖,△ABC是邊長為3的等邊三角形,將△ABC沿直線BC向右平移,使B點(diǎn)與C點(diǎn)重合,得到△DCE,連接BD,交AC于F.
(1)猜想AC與BD的位置關(guān)系,并證明你的結(jié)論;
(2)求線段BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,AO是邊長為2的等邊△ABC的高,點(diǎn)D是AO上的一個(gè)動(dòng)點(diǎn)(點(diǎn)D不與點(diǎn)A、O重合),以CD為一邊在AC下方作等邊△CDE,連結(jié)BE并延長,交AC的延長線于點(diǎn)F.
(1)求證:△ACD≌△BCE;
(2)當(dāng)△CEF為等腰三角形時(shí):
①求∠ACD的度數(shù);
②求△CEF的面積.

查看答案和解析>>

同步練習(xí)冊答案