【題目】如圖,拋物線與直線相交于,兩點,且拋物線經(jīng)過點

求拋物線的解析式;

P是拋物線上的一個動點不與點A、點B重合,過點P作直線軸于點D,交直線AB于點E

當(dāng)時,求P點坐標(biāo);

是否存在點P使為等腰三角形?若存在請直接寫出點P的坐標(biāo);若不存在,請說明理由.

【答案】(1)(2)點P坐標(biāo)為

【解析】分析:(1)由直線解析式可求得B點坐標(biāo),由A、B、C三點的坐標(biāo),利用待定系數(shù)法可求得拋物線解析式;

(2)①可設(shè)出P點坐標(biāo),則可表示出E、D的坐標(biāo),從而可表示出PEED的長,由條件可知到關(guān)于P點坐標(biāo)的方程,則可求得P點坐標(biāo);②由E、B、C三點坐標(biāo)可表示出BE、CEBC的長,由等腰三角形的性質(zhì)可得到關(guān)于E點坐標(biāo)的方程,可求得E點坐標(biāo),則可求得P點坐標(biāo).

詳解:在直線上,

,

,

A、B、C三點坐標(biāo)代入拋物線解析式可得,解得,

拋物線解析式為

設(shè),則,,

,

,

當(dāng)時,解得,但當(dāng)時,PA重合不合題意,舍去,

;

當(dāng)時,解得,但當(dāng)時,PA重合不合題意,舍去,

綜上可知P點坐標(biāo)為;

設(shè),則,且,

,,,

當(dāng)為等腰三角形時,則有三種情況,

當(dāng)時,則,解得,此時P點坐標(biāo)為

當(dāng)時,則,解得,此時P點坐標(biāo)為;

當(dāng)時,則,解得,當(dāng)E點與B點重合,不合題意,舍去,此時P點坐標(biāo)為;

綜上可知存在滿足條件的點P,其坐標(biāo)為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小明的爸爸在魚池邊開了一塊四邊形土地種了一些蔬菜,爸爸讓小明計算一下土地的面積,以便計算一下產(chǎn)量。小明找了一卷米尺,測得AB=4米,BC=3米,CD=13米,DA=12米,又已知∠B=90°。

1)土地的面積是多少?

2)蔬菜單位面積產(chǎn)量為20㎏,則這塊地產(chǎn)蔬菜多少千克?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,動點P在∠ABC的平分線BD上,動點M在BC邊上,若BC=3,∠ABC=45°,則PM+PC的最小值是( )

A. 2 B. C. D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,數(shù)軸上A,B兩點對應(yīng)的有理數(shù)分別為10和15,點P從點A出發(fā),以每秒1個單位長度的速度沿數(shù)軸正方向運動,點Q同時從原點O出發(fā),以每秒2個單位長度的速度沿數(shù)軸正方向運動,設(shè)運動時間為t秒.

(1)當(dāng)0<t<5時,用含t的式子填空:

BP=_______,AQ=_______;

(2)當(dāng)t=2時,求PQ的值;

(3)當(dāng)PQ=AB時,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形OABC中,點Ax軸上,點Cy軸上,點B的坐標(biāo)是,將沿直線BD折疊,使得點C落在對角線OB上的點E處,折痕與OC交于點D

1)求直線OB的解析式及線段OE的長.

2)求直線BD的解析式及點E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形EFGH的四個頂點分別在菱形ABCD的四條邊上,BE=BF,將△AEH, △CFG分別沿EH,FG折疊,當(dāng)重疊部分為菱形且面積是菱形ABCD面積的時,則( )

A. B. 2 C. D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用“☆”定義一種新運算:對于任意有理數(shù)ab,規(guī)定ab=.例如:2=.從-50,-40,-30,-20-10,0,1020,3040,50中任選兩個有理數(shù)做abab)的值,并計算ab,那么所有運算結(jié)果中的最大值是_________ .最小值是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊿ABC中,AB=AC,∠BAC=,點D在線段BC上運動(不與點BC重合),連接AD,作∠1=∠C,DE交線段AC于點E.

(1)若∠BAD=,求∠EDC的度數(shù);

(2)當(dāng)DC=AC時,求證:⊿ABD≌⊿DCE ;

(3)當(dāng)∠BAD的度數(shù)是多少時,⊿ADE能成為等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平面直角坐標(biāo)系xOy中,點P的坐標(biāo)為(m+1,m-1).

(1)試判斷點P是否在一次函數(shù)y=x-2的圖象上,并說明理由;

(2)如圖,一次函數(shù)y=-x+3的圖象與x軸、y軸分別相交于A,B,若點P在△AOB的內(nèi)部,求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案