已知點P(-1,m)在二次函數(shù)的圖象上,則m的值為           ;平移此二次函數(shù)的圖象,使點P與坐標(biāo)原點重合,則平移后的函數(shù)圖象所對應(yīng)的解析式為                  .
0,y=x2﹣2x.

試題分析:解:∵點P(﹣1,m)在二次函數(shù)y=x2﹣1的圖象上,
∴(﹣1)2﹣1=m,
解得m=0,
平移方法為向右平移1個單位,平移后的拋物線的二次函數(shù)的頂點坐標(biāo)為(1,﹣1),
平移后的函數(shù)圖象所對應(yīng)的解析式為y=(x﹣1)2﹣1=x2﹣2x,
即y=x2﹣2x.   
故答案為:0,y=x2﹣2x.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:拋物線與x軸交于點A、B(A左B右),其中點B的坐標(biāo)為(7,0),設(shè)拋物線的頂點為C.

(1)求拋物線的解析式和點C的坐標(biāo);
(2)如圖1,若AC交y軸于點D,過D點作DE∥AB交BC于E.點P為DE上一動點,PF⊥AC于F,PG⊥BC于G.設(shè)點P的橫坐標(biāo)為a,四邊形CFPG的面積為y,求y與a的函數(shù)關(guān)系式和y的最大值;
(3)如圖2,在條件(2)下,過P作PH⊥x軸于點H,連結(jié)FH、GH,是否存在點P,使得△PFH與△PHG相似?若存在,求出P點坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知二次函數(shù)的圖象與x軸交于A、B兩點(B在A的左側(cè)),頂點為C, 點D(1,m)在此二次函數(shù)圖象的對稱軸上,過點D作y軸的垂線,交對稱軸右側(cè)的拋物線于E點.

(1)求此二次函數(shù)的解析式和點C的坐標(biāo);
(2)當(dāng)點D的坐標(biāo)為(1,1)時,連接BD、.求證:平分;
(3)點G在拋物線的對稱軸上且位于第一象限,若以A、C、G為頂點的三角形與以G、D、E為頂點的三角形相似,求點E的橫坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù)y1=ax2+bx-3的圖象經(jīng)過點A(2,-3),B(-1,0),與y軸交于點C,與x軸另一交點交于點D.

(1)求二次函數(shù)的解析式;
(2)求點C、點D的坐標(biāo);
(3)若一條直線y2,經(jīng)過C、D兩點,請直接寫出y1>y2時,的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

二次函數(shù)的圖象經(jīng)過點,
(1)求此二次函數(shù)的關(guān)系式;
(2)求此二次函數(shù)圖象的頂點坐標(biāo);
(3)填空:把二次函數(shù)的圖象沿坐標(biāo)軸方向最少平移  個單位,使得該圖象的頂點在原點.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

拋物線的頂點坐標(biāo)是( )
A.(2,-3)B.(-2,3)C.(2,3)D.(-2,-3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知拋物線經(jīng)過A(﹣3,0),B(1,0)兩點,與y軸交于點C,其頂點為D,對稱軸是直線l,l與x軸交于點H.

(1)求該拋物線的解析式;
(2)若點P是該拋物線對稱軸l上的一個動點,求△PBC周長的最小值;
(3)若E是線段AD上的一個動點( E與A、D不重合),過E點作平行于y軸的直線交拋物線于點F,交x軸于點G,設(shè)點E的橫坐標(biāo)為m,△ADF的面積為S.
①求S與m的函數(shù)關(guān)系式;
②S是否存在最大值?若存在,求出最大值及此時點E的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知二次函數(shù)y=ax²+bx+c(a≠0)的圖像如圖所示,則下列結(jié)論中正確的是(  )
A.a(chǎn)>0B.3是方程ax²+bx+c=0的一個根
C.a(chǎn)+b+c=0D.當(dāng)x<1時,y隨x的增大而減小

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

拋物線y=x2向上平移2個單位,得到新拋物線的函數(shù)表達式是(   )
A.y=x2-2B.y=(x-2)2C.y=x2+2D.y=(x+2)2

查看答案和解析>>

同步練習(xí)冊答案