已知直線y=x+m與y軸和x軸分別相交于A,B兩點,作OC⊥AB于C.
(1)寫出A,B兩點的坐標(用含m的代數(shù)式表示),并求tanA的值;
(2)如果AC=4,求m的值.
【答案】分析:(1)令x=0以及y=0求出A,B的坐標.然后可求出tanA.
(2)已知△ABO是直角三角形,求出AB的值.證明△ACO∽△ABO,利用線段比求出m值.
解答:解:(1)當x=0時,y=m,∴A(0,m);
當y=0時x=-2m,∴B(-2m,0).
tanA==2.

(2)在Rt△ABO中,OA=m,OB=2m,
∴AB=m,
∵△ACO∽△AOB,
∴OA2=AC•AB,
m2=4×m,
∴m1=20,m2=0(不符合題意,舍去).
∴m的值為20.
點評:本題考查的是三角函數(shù)的有關(guān)知識,相似三角形的判定以及一次函數(shù)的綜合題,難度中等.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知直線y=-x+4與反比例函數(shù)y=
kx
的圖象相交于點A(-2,a),并且與x軸相交于點B.
(1)求a的值;
(2)求反比例函數(shù)的表達式;
(3)求△AOB的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

8、已知直線y=kx+b與直線y=3x平行,且與y軸相交于(0,-9),則此直線函數(shù)的解析式為
y=3x-9

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知直線y=2x-2與雙曲線圖y=
kx
交于點A(2,y)、B(m,n).
(1)求反比例函數(shù)的解析式;
(2)求B點的坐標;
(3)寫出反比例函數(shù)值大于一次函數(shù)值的x的取值范圍;
(4)求△AOB的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

根據(jù)題意,解答下列問題:
(1)如圖1,已知直線y=2x+4與x軸、y軸分別交于A、B兩點,求線段AB的長;
(2)公式推導:類比(1)的求解過程,P1(x1,y1),P2(x2,y2)是平面直角坐標系內(nèi)的兩點,如圖2,請你通過構(gòu)造直角三角形的方法推導公式P1P2=
(x2-x1)2+(y2-y1)2
;
(3)公式應用:已知:如圖3,A(6,1),B(2,4),問:是否在x軸、y軸上分別存在P、Q兩點,使得四邊形ABQP的周長最短?若存在,求出四邊形ABQP的周長;若不存在,請說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知直線y1=x+m與y2=kx-1相交于點P(-1,1),則關(guān)于x的不等式x+m>kx-1的解集的是
x>-1
x>-1

查看答案和解析>>

同步練習冊答案