(2009•寶山區(qū)二模)如圖,⊙P內(nèi)含于⊙O,⊙O的弦AB與⊙P相切,且AB∥OP.若⊙O的半徑為3,⊙P的半徑為1,則弦AB的長為   
【答案】分析:設(shè)AB與⊙P相切于點E,則可知垂直;連接OA,作OC⊥AB于C,即得OC=PE=r,、進(jìn)而可求得AB的長.
解答:解:根據(jù)題意,設(shè)AB與⊙P相切于點E,連接OA、PE,做OC⊥AB于C,如圖:
由切線性質(zhì)知,PE⊥AB,
又∵AB∥OP,
∴四邊形OCPE為矩形,
∴OC=PE=1,
∴AC=AB==
∴AB=
點評:本題考查了切線性質(zhì)及矩形的判定和性質(zhì),通過連接圓心和切點來構(gòu)造垂直關(guān)系,是基礎(chǔ)題型.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2010年上海市寶山區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

(2009•寶山區(qū)二模)如圖,矩形ABCD中,,點E是BC邊上的一個動點,連接AE,過點D作DF⊥AE,垂足為點F.
(1)設(shè)BE=x,∠ADF的余切值為y,求y關(guān)于x的函數(shù)解析式;
(2)若存在點E,使得△ABE、△ADF與四邊形CDFE的面積比是3:4:5,試求矩形ABCD的面積;
(3)對(2)中求出的矩形ABCD,連接CF,當(dāng)BE的長為多少時,△CDF是等腰三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年上海市寶山區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

(2009•寶山區(qū)二模)如圖,直線與x軸交于點A,與y軸交于點B,把△AOB沿著過點B的某條直線折疊,使點A落在y軸負(fù)半軸上的點D處,折痕與x軸交于點C.
(1)試求點A、B、C的坐標(biāo);
(2)求sin∠ABC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年上海市寶山區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

(2009•寶山區(qū)二模)在直角坐標(biāo)系中,把點A(-1,a)(a為常數(shù))向右平移4個單位得到A′,經(jīng)過點A、A′的拋物線y=ax2+bx+c與y軸的交點的縱坐標(biāo)為2.
(1)求這條拋物線的解析式;
(2)設(shè)該拋物線的頂點為點P,點B的坐標(biāo)為(1,m),且m<3,若△ABP是等腰三角形,求點B的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年上海市寶山區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

(2009•寶山區(qū)二模)已知一次函數(shù)y=(1-2m)x+m-3圖象與y軸的交點位于y軸負(fù)半軸上,且函數(shù)值y隨自變量x的增大而減。
(1)求m的取值范圍;
(2)又如果該一次函數(shù)的圖象與坐標(biāo)軸圍成的三角形面積是2,求這個一次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年上海市寶山區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:填空題

(2009•寶山區(qū)二模)請你寫出一個二次函數(shù)解析式,使其圖象的頂點在y軸上,且在y軸右側(cè)圖象是下降的   

查看答案和解析>>

同步練習(xí)冊答案