【題目】如圖,已知二次函數(shù)圖象的頂點(diǎn)在原點(diǎn),直線y= x+4的圖象與該二次函數(shù)的圖象交于點(diǎn)A(m,8),直線與x軸的交點(diǎn)為C,與y軸的交點(diǎn)為B.
(1)求這個二次函數(shù)的解析式與B點(diǎn)坐標(biāo);
(2)P為線段AB上的一個動點(diǎn)(點(diǎn)P與A,B不重合),過P作x軸的垂線與這個二次函數(shù)的圖象的交于點(diǎn)D,與x軸交于點(diǎn)E,設(shè)線段PD長為h,點(diǎn)P的橫坐標(biāo)為t,求h與t之間的函數(shù)關(guān)系式,并寫出自變量t的取值范圍;
(3)在(2)的條件下,在線段AB上是否存在點(diǎn)P.使得以點(diǎn)P,E,B為頂點(diǎn)的三角形為等腰三角形?若存在,請直接寫P點(diǎn)坐標(biāo);若不存在,請說明理由.
【答案】
(1)
解:∵點(diǎn)A(m,8)在直線y= x+4上,
∴ m+4=8,解得m=8,
∴A(8,8),
∵拋物線過原點(diǎn),
∴可設(shè)二次函數(shù)的解析式為y=ax2(a≠0),
∵A(8,8)在y=ax2圖象上,
∴8=a×82,解得a= ,
∴二次函數(shù)的解析式為y= x2,
∵直線y=x+4與y軸交于點(diǎn)B,
∴令x=0時可得y=4,即B(0,4)
(2)
解:∵P點(diǎn)在y= x+4上,且橫坐標(biāo)為t,
∴P(t, t+4),
又PD⊥X軸于E,
∴D(t, ),E(t,0),
∵PD=h=PE﹣DE=( t+4)﹣ ,
∴h=﹣ + t+4,
∵P與A,B不重合且在線段上,
∴0<t<8,
即h與t的函數(shù)關(guān)系式為h=﹣ + t+4(0<t<8)
(3)
解:設(shè)E(n,0)(0<n<8),則P(n, n+4),且B(0,4),
∴PB= = n,PE= n+4,BE= = ,
若△PEB為等腰三角形,則有PB=PE、PB=BE或PE=BE三種情況,
① 當(dāng)PB=PE時,則有 n= n+4,解得n=2 +2,此時P點(diǎn)坐標(biāo)為(2 +2, +5);
②當(dāng)PB=BE時,則有 n= ,解得n=8(此時P與A重合,不合題意,舍去)或n=﹣8<0舍去;
③當(dāng)PE=BE時,則有 n+4= ,解得n=0(舍去)或n= ,此時P點(diǎn)坐標(biāo)為( , );
綜上可知存在滿足條件的P點(diǎn),其坐標(biāo)為(2 +2, +5)或( , )
【解析】(1)把A點(diǎn)坐標(biāo)代入直線解析式,可求得m的值,可求得A點(diǎn)坐標(biāo),利用待定系數(shù)法可求得拋物線解析式,結(jié)合直線解析式可求得B點(diǎn)坐標(biāo);(2)由直線和拋物線解析式可分別用t表示出P、D的坐標(biāo),則可表示出PD的長,即找到h與t的關(guān)系式,由點(diǎn)P在線段AB上可確定出t的取值范圍;(3)可設(shè)E點(diǎn)坐標(biāo)為(n,0),則可用n表示出P點(diǎn)坐標(biāo),從而可表示出PB、PE、BE的長度,當(dāng)△PEB為等腰三角形時,則有PB=PE、PB=BE或PE=BE三種情況,分別可得到關(guān)于n的方程,可求得n的值,則可求得P點(diǎn)坐標(biāo).
【考點(diǎn)精析】認(rèn)真審題,首先需要了解二次函數(shù)的圖象(二次函數(shù)圖像關(guān)鍵點(diǎn):1、開口方向2、對稱軸 3、頂點(diǎn) 4、與x軸交點(diǎn) 5、與y軸交點(diǎn)),還要掌握二次函數(shù)的性質(zhì)(增減性:當(dāng)a>0時,對稱軸左邊,y隨x增大而減小;對稱軸右邊,y隨x增大而增大;當(dāng)a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減小)的相關(guān)知識才是答題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在5×5的正方形網(wǎng)格中,每個小正方形的邊長都是1,在所給網(wǎng)格中按下列要求畫出圖形:
(1)已知點(diǎn)A在格點(diǎn)(即小正方形的頂點(diǎn))上,畫一條線段AB,長度為,且點(diǎn)B在格點(diǎn)上;
(2)以上題中所畫線段AB為一邊,另外兩條邊長分別是3,,畫一個三角形ABC,使點(diǎn)C在格點(diǎn)上(只需畫出符合條件的一個三角形);
(3)所畫的三角形ABC的AB邊上高線長為_________(直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,如圖,已知Rt△DOE,∠DOE=90°,OD=3,點(diǎn)D在y軸上,點(diǎn)E在x軸上,在△ABC中,點(diǎn)A,C在x軸上,AC=5.∠ACB+∠ODE=180°,∠ABC=∠OED,BC=DE.按下列要求畫圖(保留作圖痕跡):
(1)將△ODE繞O點(diǎn)按逆時針方向旋轉(zhuǎn)90°得到△OMN(其中點(diǎn)D的對應(yīng)點(diǎn)為點(diǎn)M,點(diǎn)E的對應(yīng)點(diǎn)為點(diǎn)N),畫出△OMN;
(2)將△ABC沿x軸向右平移得到△A′B′C′(其中點(diǎn)A,B,C的對應(yīng)點(diǎn)分別為點(diǎn)A′,B′,C′),使得B′C′與(1)中的△OMN的邊NM重合;
(3)求OE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解答下列問題:
(1)已知一元二次方程ax2+bx+c=0(a≠0)有兩根x1 , x2(b2﹣4ac≥0).用求根公式寫出x1 , x2 , 并證明x1+x2=﹣ ,x1x 2=
(2)若一元二次方程x2+x﹣1=0的兩根為m,n,運(yùn)用(1)中的結(jié)論,求 + 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠MON=30°,點(diǎn)A1,A2,A3,…在射線ON上,點(diǎn)B1,B2,B3,…在射線OM上,△A1B1A2,△A2B2A3,△A3B3A4,…均為等邊三角形,若OA2=4,則△AnBnAn+1的邊長為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,將△ABO繞點(diǎn)A順時針旋轉(zhuǎn)到△AB1C1的位置,點(diǎn)B、O分別落在點(diǎn)B1、C1處,點(diǎn)B1在x軸上,再將△AB1C1繞點(diǎn)B1順時針旋轉(zhuǎn)到△A1B1C2的位置,點(diǎn)C2在x軸上,將△A1B1C2繞點(diǎn)C2順時針旋轉(zhuǎn)到△A2B2C2的位置,點(diǎn)A2在x軸上,依次進(jìn)行下去….若點(diǎn)A(3,0),B(0,4),則點(diǎn)B100的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察以下等式:
第1個等式:++×=1,
第2個等式:++×=1,
第3個等式:++×=1,
第4個等式:++×=1,
第5個等式:++×=1,
……
按照以上規(guī)律,解決下列問題:
(1)寫出第6個等式:_____;
(2)寫出你猜想的第n個等式:_____(用含n的等式表示),并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC和△DBE都是等腰直角三角形,點(diǎn)D在AC上,其中∠ABC=∠DBE=90°.
(1)求∠DCE的度數(shù);
(2)當(dāng)AB=5,AD:DC=2:3時,求DE的大;
(3)當(dāng)點(diǎn)D在線段AC上運(yùn)動時(D不與A重合),請寫出一個反映DA2,DC2,DB2之間關(guān)系的等式,并加以證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com