【題目】如圖,AD是△ABC的中線,E,F分別是ADAD延長(zhǎng)線上的點(diǎn),且DE=DF,連結(jié)BFCE.下列說(shuō)法①△BDF≌△CDE;②△ABD和△ACD面積相等;③BFCE;④CE=BF.其中正確的有( 。

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

【答案】D

【解析】

根據(jù)三角形的中線把一個(gè)三角形分成兩個(gè)面積相等的三角形可判斷②;利用SAS可證△BDF≌△CDE;根據(jù)全等三角形的性質(zhì)可知∠ECD=FBD,CE=BF,根據(jù)平行線的判定定理可得BFCE.

AD是△ABC的中線

BD=CD,△ABD和△ACD面積相等,故②正確;

DE=DF,∠BDF=CDE

BDF≌△CDESAS),故①正確;

∴∠ECD=FBDCE=BF,故④正確;

BFCE,故③正確;

正確的有①②③④,共4個(gè)

故選D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖直線y=x與雙曲線y= (k>0,x>0)交于點(diǎn)A,將直線y=x向上平移4個(gè)單位長(zhǎng)度后,y軸交于點(diǎn)C,與雙曲線y= (k>0,x>0)交于點(diǎn)B,OA=3BC,k的值為(   )

A. 3 B. 6 C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,AB=AC,點(diǎn)D,E,F(xiàn)分別是△ABC邊AB,BC,AC的中點(diǎn),連接DE,EF,要使四邊形ADEF是正方形,還需增加條件:_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,EF90°,BC,AEAF,結(jié)論:EMFN;AF

EB③∠FANEAM;④△ACNABM其中正確的有

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,已知于點(diǎn)D,AE平分

(1)試探究的關(guān)系;

(2)若FAE上一動(dòng)點(diǎn),當(dāng)F移動(dòng)到AE之間的位置時(shí),,如圖2所示,此時(shí)的關(guān)系如何?

(3)若FAE上一動(dòng)點(diǎn),當(dāng)F繼續(xù)移動(dòng)到AE的延長(zhǎng)線上時(shí),如圖3,,①中的結(jié)論是否還成立?如果成立請(qǐng)說(shuō)明理由,如果不成立,寫出新的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)為常數(shù)

,求證該函數(shù)圖象與x軸必有交點(diǎn)

求證:不論m為何值,該函數(shù)圖象的頂點(diǎn)都在函數(shù)的圖象上

當(dāng)時(shí),y的最小值為,求m的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AD,AE分別是△ABC的高和角平分線,

1)若∠ABC=30°,∠ACB=50°,求∠DAE的度數(shù)

2)寫出∠DAE與∠C-B的數(shù)量關(guān)系,并證明你的結(jié)論

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某人在大樓30米高(PH=30)的窗口P處進(jìn)行觀測(cè),測(cè)得山坡上A處的俯角為15°,山腳B處的俯角為60°,已知該山坡的坡度i1,點(diǎn)P,H,B,C,A在同一個(gè)平面上,點(diǎn)H,B,C在同一條直線上,PHHC.A,B兩點(diǎn)間的距離是(  )

A. 15 B. 20 C. 20 D. 10

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,BC的垂直平分線交AB于點(diǎn)D,交BC于點(diǎn)E,若∠A=50°,DCB=2∠ACD,則∠B的度數(shù)為(

A.26°B.36°C.52°D.45°

查看答案和解析>>

同步練習(xí)冊(cè)答案