(1)如圖(1),在正方形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,易知AC⊥BD,
CO
AC
=
1
2
;
(2)如圖(2),若點(diǎn)E是正方形ABCD的邊CD的中點(diǎn),即
DE
DC
=
1
2
,過D作DG⊥AE,分別交AC、BC于點(diǎn)F、G.求證:
CF
AC
=
1
3
;
(3)如圖(3),若點(diǎn)P是正方形ABCD的邊CD上的點(diǎn),且
DP
DC
=
1
n
(n為正整數(shù)),過點(diǎn)D作DN⊥AP,分別交AC、BC于點(diǎn)M、N,請(qǐng)你先猜想CM與AC的比值是多少,然后再證明你猜想的結(jié)論.
精英家教網(wǎng)
分析:(2)由同角的余角知,∠1=∠2,由ASA證得△ADE≌△DCG?CG=DE,由BC∥AD?
CG
AD
=
CF
AF
=
1
2
,故有
CF
AC
=
1
3
;
(3)同理猜想得到
CN
BC
=
DP
DC
=
1
n
,有
CM
AC
=
1
n+1
解答:精英家教網(wǎng)(2)證明:∵四邊形ABCD為正方形,
∴AD=DC,
∴∠1+∠ADG=90°,
又∵DG⊥AE,
∴∠2+∠ADG=90°,
∴∠1=∠2,
∵AD=DC,∠1=∠2,∠ADE=∠DCG=90°,
∴△ADE≌△DCG(ASA),
∴CG=DE,
又∵E為BC中點(diǎn),
∴CG=DE=
1
2
DC,
∴CG=
1
2
AD,
∵BC∥AD,
CG
AD
=
CF
AF
=
1
2
,
CF
AC
=
1
3
;(8分)

(3)猜想
CM
AC
=
1
n+1
;(10分)
同理可證
CN
BC
=
DP
DC
=
1
n
,
又∵BC∥AD,
CM
AM
=
CN
AD
=
1
n
,
CM
AC
=
1
n+1
.(14分)
點(diǎn)評(píng):本題主要利用了正方形的性質(zhì),全等三角形的判定和性質(zhì)和平行線的性質(zhì)進(jìn)行求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知:在Rt△ABC中,∠C=90°,E為AB的中點(diǎn),且DE⊥AB于E,若∠CAD:∠DAB=1﹕2,求∠B的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,電信部門要在S區(qū)修建一座電視信號(hào)發(fā)射塔.按照設(shè)計(jì)要求,發(fā)射塔到兩個(gè)城鎮(zhèn)A,B距離必須相等,到兩條高速公路m和n的距離也必須相等.發(fā)射塔應(yīng)修建在什么位置?在圖上標(biāo)出它的位置.(保留作圖痕跡)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,E、F兩點(diǎn)在BC上,BE=CF,AB∥DE,AF∥CD
(1)求證:△ABF≌△DEC;
(2)已知中的圖是否為軸對(duì)稱圖形?
答:
(填:“是”或“否”)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知:在△ABC中,∠A=90°,AB=AC=6,P是AB上不與A、B重合的一動(dòng)點(diǎn),PQ⊥BC于Q,QR⊥AC于R.
(1)求證:PQ=BQ;
(2)設(shè)BP的長(zhǎng)為x,QR的長(zhǎng)為y,求y與x之間的函數(shù)關(guān)系式,并寫出函數(shù)的定義域;
(3)PR能否平行于BC?如果能,試求出x的值;若不能,請(qǐng)簡(jiǎn)述理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,一艘輪船在A處看見巡邏艇M在其北偏東64°的方向上,此時(shí)一艘客船在B處看見巡邏艇M在其北偏東13°的方向上,則此時(shí)從巡邏艇上看這兩艘船的視角∠AMB=
51°
51°

查看答案和解析>>

同步練習(xí)冊(cè)答案