【題目】小明在甲公司打工.幾個月后同時又在乙公司打工.甲公司每月付給他薪金470元,乙公司每月付給他薪金350元.年終小明從這兩家公司共獲得薪金7620元.問他在甲、乙兩公司分別打工幾個月?

【答案】11個月、7個月

【解析】

設(shè)小明在甲公司打工x月,在乙公司打工y月,所以小明共獲得薪金是:470x+350y元;則根據(jù)小明共獲薪金7620元,列出方程470x+350y=7620,由此求出x、y的整數(shù)解即可

解:設(shè)他在甲公司打工x個月,在乙公司打工y個月,依題可得:

470x+350y=7620,

化簡為:47x+35y=762,

∴x= =16-y+ ,

∵x、y是整數(shù),

是整數(shù),

∴y=7,x=11,

∴x=11,y=7是原方程的一組解,

∴原方程的整數(shù)解為:(k為任意整數(shù)),

又∵x>0,y>0,

,

解得:-<k<,

∴k=0

原方程正整數(shù)解為:

答:他在甲公司打工11個月,在乙公司打工7個月.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知在ABC中,ABC的外角∠ABD的平分線與∠ACB的平分線交于點OMN過點O,且MNBC,分別交AB、AC于點M、N

求證:(1)MO=MB;(2)MN=CNBM

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,∠E∠F90°∠B∠C,AEAF.有以下結(jié)論:①EMFN②CDDN;③∠FAN∠EAM;④△ACN≌△ABM.其中正確的有( ).

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關(guān)于x的方程x2+mx+m﹣2=0.
(1)求證:無論m取何值時,方程總有兩個不相等的實數(shù)根;
(2)設(shè)方程兩實數(shù)根分別為x1 , x2 , 且滿足x12+x22=﹣3x1x2 , 求實數(shù)m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等邊△ABC中,DAB邊上的一動點,以CD為一邊,向上作等邊△EDC,連接AE.

(1)求證:△ACE≌△BCD;

(2)判斷AEBC的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解方程組:

(1)(代入法)

(2)(加減法)

(3)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,Rt△AOB的兩條直角邊OA、OB分別在x軸和y軸上,OA=3,OB=4.把△AOB繞點A順時針旋轉(zhuǎn)120°,得到△ADC.邊OB上的一點M旋轉(zhuǎn)后的對應點為M′,當AM′+DM取得最小值時,點M的坐標為( )

A.(0,
B.(0,
C.(0,
D.(0,3)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=c,AC=b.AD△ABC的角平分線,DE⊥ABE,DF⊥ACF,EFAD相交于O,已知△ADC的面積為1.

(1)證明:DE=DF;

(2)試探究線段EFAD是否垂直?并說明理由;

(3)若△BDE的面積是△CDF的面積2倍.試求四邊形AEDF的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線AB、CD相交于點O,下列條件中,不能說明ABCD的是(  )

A. AOD90°

B. AOC=∠BOC

C. BOC+∠BOD180°

D. AOC+∠BOD180°

查看答案和解析>>

同步練習冊答案