【題目】如圖,△APB中,AB=2,∠APB=90°,在AB的同側(cè)作正△ABD、正△APE和正△BPC,則四邊形PCDE面積的最大值是

【答案】1
【解析】解:延長(zhǎng)EP交BC于點(diǎn)F, ∵∠APB=90°,∠APE=∠BPC=60°,
∴∠EPC=150°,
∴∠CPF=180°﹣150°=30°,
∴PF平分∠BPC,
又∵PB=PC,
∴PF⊥BC,
設(shè)Rt△ABP中,AP=a,BP=b,則
CF= CP= b,a2+b2=22=4,
∵△APE和△ABD都是等邊三角形,
∴AE=AP,AD=AB,∠EAP=∠DAB=60°,
∴∠EAD=∠PAB,
∴△EAD≌△PAB(SAS),
∴ED=PB=CP,
同理可得:△APB≌△DCB(SAS),
∴EP=AP=CD,
∴四邊形CDEP是平行四邊形,
∴四邊形CDEP的面積=EP×CF=a× b= ab,
又∵(a﹣b)2=a2﹣2ab+b2≥0,
∴2ab≤a2+b2=4,
ab≤1,
即四邊形PCDE面積的最大值為1.
故答案為:1

先延長(zhǎng)EP交BC于點(diǎn)F,得出PF⊥BC,再判定四邊形CDEP為平行四邊形,根據(jù)平行四邊形的性質(zhì)得出:四邊形CDEP的面積=EP×CF=a× b= ab,最后根據(jù)a2+b2=4,判斷 ab的最大值即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線 軸交于點(diǎn)A、B,與 軸交于點(diǎn)C,則能使△ABC為等腰三角形拋物線的條數(shù)是( )
A.5
B.4
C.3
D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司今年如果用原線下銷售方式銷售一產(chǎn)品,每月的銷售額可達(dá)100萬(wàn)元.由于該產(chǎn)品供不應(yīng)求,公司計(jì)劃于3月份開(kāi)始全部改為線上銷售,這樣,預(yù)計(jì)今年每月的銷售額y(萬(wàn)元)與月份x(月)之間的函數(shù)關(guān)系的圖象如圖1中的點(diǎn)狀圖所示(5月及以后每月的銷售額都相同),而經(jīng)銷成本p(萬(wàn)元)與銷售額y(萬(wàn)元)之間函數(shù)關(guān)系的圖象圖2中線段AB所示.
(1)求經(jīng)銷成本p(萬(wàn)元)與銷售額y(萬(wàn)元)之間的函數(shù)關(guān)系式;
(2)分別求該公司3月,4月的利潤(rùn);
(3)問(wèn):把3月作為第一個(gè)月開(kāi)始往后算,最早到第幾個(gè)月止,該公司改用線上銷售后所獲得利潤(rùn)總額比同期用線下方式銷售所能獲得的利潤(rùn)總額至少多出200萬(wàn)元?(利潤(rùn)=銷售額﹣經(jīng)銷成本)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知點(diǎn)A(0,1),點(diǎn)B在x軸正半軸上的一動(dòng)點(diǎn),以AB為邊作等腰直角三角形ABC,使點(diǎn)C在第一象限,∠BAC=90°,設(shè)點(diǎn)B的橫坐標(biāo)為x,點(diǎn)C的縱坐標(biāo)為y,則表示y與x的函數(shù)關(guān)系的圖象大致是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,∠ACB=90°,AC=5,BC=12,CO⊥AB于點(diǎn)O,D是線段OB上一點(diǎn),DE=2,ED∥AC(∠ADE<90°),連接BE、CD.設(shè)BE、CD的中點(diǎn)分別為P、Q.
(1)求AO的長(zhǎng);
(2)求PQ的長(zhǎng);
(3)設(shè)PQ與AB的交點(diǎn)為M,請(qǐng)直接寫(xiě)出|PM﹣MQ|的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某超市銷售甲、乙兩種糖果,購(gòu)買(mǎi)3千克甲種糖果和1千克乙種糖果共需44元,購(gòu)買(mǎi)1千克甲種糖果和2千克乙種糖果共需38元.
(1)求甲、乙兩種糖果的價(jià)格;
(2)若購(gòu)買(mǎi)甲、乙兩種糖果共20千克,且總價(jià)不超過(guò)240元,問(wèn)甲種糖果最少購(gòu)買(mǎi)多少千克?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】
(1)計(jì)算:( 1+ cos45°﹣ ;
(2)化簡(jiǎn):(x+ )÷

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】商店只有雪碧、可樂(lè)、果汁、奶汁四種飲料,每種飲料數(shù)量充足,某同學(xué)去該店購(gòu)買(mǎi)飲料,每種飲料被選中的可能性相同.
(1)若他去買(mǎi)一瓶飲料,則他買(mǎi)到奶汁的概率是;
(2)若他兩次去買(mǎi)飲料,每次買(mǎi)一瓶,且兩次所買(mǎi)飲料品種不同,請(qǐng)用樹(shù)狀圖或列表法求出他恰好買(mǎi)到雪碧和奶汁的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線y=ax2+bx+c(a>0,c<0)交x軸于點(diǎn)A,B,交y軸于點(diǎn)C,設(shè)過(guò)點(diǎn)A,B,C三點(diǎn)的圓與y軸的另一個(gè)交點(diǎn)為D.
(1)如圖1,已知點(diǎn)A,B,C的坐標(biāo)分別為(﹣2,0),(8,0),(0,﹣4);
①求此拋物線的表達(dá)式與點(diǎn)D的坐標(biāo);
②若點(diǎn)M為拋物線上的一動(dòng)點(diǎn),且位于第四象限,求△BDM面積的最大值;

(2)如圖2,若a=1,求證:無(wú)論b,c取何值,點(diǎn)D均為定點(diǎn),求出該定點(diǎn)坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案