【題目】如圖,長方形OABC中,O為直角坐標系的原點,A、C兩點的坐標分別為(6,0),(0,10),點B在第一象限內(nèi).

(1)寫出點B的坐標,并求長方形OABC的周長;

(2)若有過點C的直線CD把長方形OABC的周長分成3:5兩部分,D為直線CD與長方形的邊的交點,求點D的坐標.

【答案】(1)B的坐標為(6,10),長方形OABC的周長為32;(2)點D的坐標為(2,0)

【解析】試題分析:(1)由A、C的坐標得到OA,OC的長.由長方形的性質(zhì)得到BC,AB的長從而得到點B的坐標和長方形OABC的周長;

2CD把長方形OABC的周長分為35兩部分,得到被分成的兩部分的長分別為1220然后分兩種情況討論①當點DAB上時,②當點DOA上時

試題解析:(1A6,0),C0,10),OA=6,OC=10

∵四邊形OABC是長方形,BC=OA=6,AB=OC=10∴點B的坐標為(6,10).OC=10,OA=6,∴長方形OABC的周長為2×(6+10)=32

2CD把長方形OABC的周長分為35兩部分,∴被分成的兩部分的長分別為1220

①當點DAB上時,如圖AD=20-10-6=4,所以點D的坐標為(6,4).

②當點DOA上時,如圖OD=12-10=2,所以點D的坐標為(20).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】△ABC的頂點均在邊長為1的小正方形網(wǎng)絡(luò)中的格點上,如圖,建立平面直角坐標系,點Bx軸上.

(1)在圖中畫出△ABC關(guān)于x軸對稱的△A’B’C’,連接AA’,求證:△AA’C≌△A’AC’;

2)請在y軸上畫點P,使得PB+PC最短.(保留作圖痕跡,不寫畫法)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把正方形ABCD繞點C按順時針方向旋轉(zhuǎn)45°得到正方形A′B′CD′(此時,點B′落在對角線AC上,點A′落在CD的延長線上),A′B′交AD于點E,連接AA′、CE.

求證:(1)ADA′≌△CDE;

(2)直線CE是線段AA′的垂直平分線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】3x3ym+16xn+1y2是同類項,則m+n_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知射線CBOA,∠C=OAB,

(1)求證:ABOC;

(2)如圖2,E、FCB上,且滿足∠FOB=AOB,OE平分∠COF.

①當∠C=110°時,求∠EOB的度數(shù).

②若平行移動AB,那么∠OBC :OFC的值是否隨之發(fā)生變化?若變化,找出變

化規(guī)律;若不變,求出這個比值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】八達嶺森林體驗中心,由八達嶺森林體驗館和450公頃的戶外體驗區(qū)構(gòu)成。森林體驗館包括"八達嶺森林變遷"、"八達嶺森林大家族"、"森林讓生活更美好"等展廳,戶外游憩體驗系統(tǒng)根據(jù)森林生態(tài)旅游最新理念,采取少設(shè)施、設(shè)施集中的點線布局模式,突破傳統(tǒng)的"看風(fēng)景"旅游模式,強調(diào)全面體驗森林之美。

在室內(nèi)展廳內(nèi),有這樣一個可以動手操作體驗的儀器,如圖小明在社會大課堂活動中,記錄了這樣一組數(shù)字:

交通

工具

行駛100公里的碳足跡(Kg)

100公里碳中

和樹木棵樹

飛機

13.9

0.06

小轎車

22.5

0.10

公共汽車

1.3

0.005

根據(jù)以上材料回答問題:

A,B兩地相距300公里,小轎車以90公里/小時的速度從A地開往B地;公共汽車以60公里/小時的速度從B開往A地,兩車同時出發(fā)相對而行,兩車在C地相遇,相遇后繼續(xù)前行到達各自的目的地。

1多少小時后兩車相遇?

2小轎車和公共汽車分別到達目的地,計算小轎車的碳足跡為多少?公共汽車的碳中和樹木棵數(shù)為多少?

3根據(jù)觀察或計算說明,為了減少環(huán)境污染,我們應(yīng)該選擇哪種交通工具出行更有利于環(huán)保呢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖, ,要使,還需添加一個條件,那么在①;;這四個關(guān)系中可以選擇的是

A. ①②③ B. ①②④ C. ①③④ D. ②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù) ykx4(k0)

(1)x=-1 時,y2,求此函數(shù)的表達式;

(2)函數(shù)圖象與 x 軸、y 軸的交點分別為 AB, 求出AOB 的面積;

(3)利用圖象求出當 y3 時,x 的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案