【題目】如圖,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足為D,tan∠ACD= ,AB=5,那么CD的長是

【答案】
【解析】解:∵∠ACB=90°,CD⊥AB, ∴∠ACD+∠BCD=∠BCD+∠B=90°,
∴∠B=∠ACD,
∵tan∠ACD= ,
∴tan∠B= = ,
設(shè)AC=3x,BC=4x,
∵AC2+BC2=AB2 ,
∴(3x)2+(4x)2=52 ,
解得:x=1,
∴AC=3,BC=4,
∵S△ABC= ,
∴CD= = ,
故答案為:
根據(jù)余角的性質(zhì)得到∠B=∠ACD,由tan∠ACD= ,得到tan∠B= = ,設(shè)AC=3x,BC=4x,根據(jù)勾股定理得到AC=3,BC=4,根據(jù)三角形的面積公式即可得到結(jié)論..

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊△ABC中,點O在邊AB上,⊙O過點B且分別與邊AB、BC相交于點D、E、F是AC上的點,判斷下列說法錯誤的是(
A.若EF⊥AC,則EF是⊙O的切線
B.若EF是⊙O的切線,則EF⊥AC
C.若BE=EC,則AC是⊙O的切線
D.若BE= EC,則AC是⊙O的切線

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)觀察思考:如圖,線段AB上有兩個點C、D,請分別寫出以點A、B、C、D為端點的線段,并計算圖中共有多少條線段;

(2)模型構(gòu)建:如果線段上有m個點(包括線段的兩個端點),則該線段上共有多少條線段?請說明你結(jié)論的正確性;

(3)拓展應(yīng)用:某班45名同學(xué)在畢業(yè)后的一次聚會中,若每兩人握1次手問好,那么共握多少次手?

請將這個問題轉(zhuǎn)化為上述模型,并直接應(yīng)用上述模型的結(jié)論解決問題.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】猜想與證明:
如圖1,擺放矩形紙片ABCD與矩形紙片ECGF,使B、C、G三點在一條直線上,CE在邊CD上,連接AF,若M為AF的中點,連接DM、ME,試猜想DM與ME的關(guān)系,并證明你的結(jié)論.
拓展與延伸:

(1)若將”猜想與證明“中的紙片換成正方形紙片ABCD與正方形紙片ECGF,其他條件不變,則DM和ME的關(guān)系為
(2)如圖2擺放正方形紙片ABCD與正方形紙片ECGF,使點F在邊CD上,點M仍為AF的中點,試證明(1)中的結(jié)論仍然成立.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】取一張矩形的紙片進(jìn)行折疊,具體操作過程如下: 第一步:先把矩形ABCD對折,折痕為MN,如圖(1);
第二步:再把B點疊在折痕線MN上,折痕為AE,點B在MN上的對應(yīng)點為B′,得Rt△AB′E,如圖(2);
第三步:沿EB′線折疊得折痕EF,如圖(3).
若AB= ,則EF的值是(

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算題
(1)計算:4sin60°+|3﹣ |﹣( ﹣1+(π﹣2017)0
(2)先化簡,再求值:( ﹣1)÷ ,其中x的值從不等式組 的整數(shù)解中任選一個.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商家預(yù)測一種應(yīng)季襯衫能暢銷市場,就用13200元購進(jìn)了一批這種襯衫,面市后果然供不應(yīng)求,商家又用28800元購進(jìn)了第二批這種襯衫,所購數(shù)量是第一批購進(jìn)量的2倍,但單價貴了10元.
(1)該商家購進(jìn)的第一批襯衫是多少件?
(2)若兩批襯衫按相同的標(biāo)價銷售,最后剩下50件按八折優(yōu)惠賣出,如果兩批襯衫全部售完后利潤不低于25%(不考慮其他因素),那么每件襯衫的標(biāo)價至少是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,,P從點D出發(fā)向點A運(yùn)動,運(yùn)動到點A即停止;同時,點Q從點B出發(fā)向點C運(yùn)動,運(yùn)動到點C即停止,點P、Q的速度都是,連接PQ、AQ、設(shè)點P、Q運(yùn)動的時間為ts.

當(dāng)t為何值時,四邊形ABQP是矩形;

當(dāng)t為何值時,四邊形AQCP是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,對角線AC、BD相交于點O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.

(1)求證:四邊形ABCD是矩形.

(2)若∠ADF:∠FDC=3:2,DF⊥AC,則∠BDF的度數(shù)是多少?

查看答案和解析>>

同步練習(xí)冊答案