三角形內(nèi)角平分線的交點(diǎn)為三角形的內(nèi)心.如圖,D是△ABC的內(nèi)心,E是△ABD的內(nèi)心,F(xiàn)是△BDE的內(nèi)心.若∠BFE的度數(shù)為整數(shù),則∠BFE至少是    °.
【答案】分析:首先由三角形內(nèi)角的性質(zhì),求得,∠ADB=90°+,∠BED=90°+,∠BFE=90°+,又由∠BFE的度數(shù)為整數(shù),即可求得∠BEF的最小值.
解答:解:∵D是△ABC的內(nèi)心,E是△ABD的內(nèi)心,F(xiàn)是△DBE的內(nèi)心,
∴∠BDE=∠ADB,∠ADB=90°+,∠BED=90°+,∠BFE=90°+
∴∠BFE=90°+=90°+∠ADB=90°+(90°+∠C)=112.5°+∠C,
∵∠BFE的度數(shù)為整數(shù),
∴當(dāng)∠C=4°時(shí),∠BFE=113°最小,
故答案為113°.
點(diǎn)評(píng):此題考查了三角形內(nèi)心的性質(zhì).注意三角形的內(nèi)心即是三角形角平分線的交點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

15、規(guī)定三角形的三條內(nèi)角平分線的交點(diǎn)叫三角形的內(nèi)心.
(1)已知I為三角形ABC的內(nèi)心,連接AI交三角形ABC的外接圓于點(diǎn)D,如圖所示,連接BD和CD,求證:BD=CD=ID.

(2)己知三角形ABC,AD平分∠BAC且與它的外接圓交于點(diǎn)D,在線段AD上有一點(diǎn)I滿足BD=ID.試問點(diǎn)I是否是三角形ABC的內(nèi)心?若是加以證明;若不是,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)通過學(xué)習(xí)我們已經(jīng)知道三角形的三條內(nèi)角平分線是交于一點(diǎn)的.如圖,P是△ABC的內(nèi)角平分線的交點(diǎn),已知P點(diǎn)到AB邊的距離為1,△ABC的周長(zhǎng)為10,則△ABC的面積為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

請(qǐng)閱讀下面材料,并回答所提出的問題.
三角形內(nèi)角平分線性質(zhì)定理:三角形的內(nèi)角平分線分對(duì)邊所得的兩條線段和這個(gè)角的兩邊對(duì)應(yīng)成比例.
已知:如圖,△ABC中,AD是角平分線.
求證:
BD
DC
=
AB
AC

分析:要證
BD
DC
=
AB
AC
,一般只要證BD、DC與AB、AC或BD、AB與DC、AC所在三角形相似.現(xiàn)在B、D、C在一直線上,△ABD與△ADC不相似,需要考慮用別的方法換比.在比例式
BD
DC
=
AB
AC
中,AC恰是BD、DC、AB的第四比例項(xiàng),所以考慮過C作C精英家教網(wǎng)E∥AD,交BA的延長(zhǎng)線于E,從而得到BD、DC、AB的第四比例項(xiàng)AE,這樣,證明
BD
DC
=
AB
AC
就可以轉(zhuǎn)化成證AE=AC.
證明:過C作CE∥DA,交BA的延長(zhǎng)線于E.
CE∥DA?
∠1=∠E
∠2=∠3
∠1=∠2
?∠E=∠3?AE=AC
,
CE∥DA?
BD
DC
=
BA
AE
AE=AC
?
BD
DC
=
AB
AC

(1)上述證明過程中,用到了哪些定理?(寫對(duì)兩個(gè)定理即可)
(2)在上述分析、證明過程中,主要用到了下列三種數(shù)學(xué)思想的哪一種?選出一個(gè)填在后面的括號(hào)內(nèi).精英家教網(wǎng)[]
①數(shù)形結(jié)合思想;
②轉(zhuǎn)化思想;
③分類討論思想.
(3)用三角形內(nèi)角平分線性質(zhì)定理解答問題:
已知:如圖,△ABC中,AD是角平分線,AB=5cm,AC=4cm,BC=7cm.求BD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

24、先閱讀下面的材料,然后解答問題:
已知:如圖1等腰直角三角形ABC中,∠B=90°,AD是角平分線,交BC邊于點(diǎn)D.
求證:AC=AB+BD.
證明:如圖1,在AC上截取AE=AB,連接DE,則由已知條件易知:Rt△ADB≌Rt△ADE(AAS)
∴∠AED=∠B=90°,DE=DB
又∵∠C=45°,∴△DEC是等腰直角三角形.
∴DE=EC.
∴AC=AE+EC=AB+BD.
我們將這種證明一條線段等于另兩線段和的方法稱為“截長(zhǎng)法”.
解決問題:現(xiàn)將原題中的“AD是內(nèi)角平分線,交BC邊于點(diǎn)D”換成“AD是外角平分線,交BC邊的延長(zhǎng)線于點(diǎn)D,如圖2”,其他條件不變,請(qǐng)你猜想線段AC、AB、BD之間的數(shù)量關(guān)系,并證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

規(guī)定三角形的三條內(nèi)角平分線的交點(diǎn)叫三角形的內(nèi)心.
(1)已知I為三角形ABC的內(nèi)心,連接AI交三角形ABC的外接圓于點(diǎn)D,如圖所示,連接BD和CD,求證:BD=CD=ID.
(2)己知三角形ABC,AD平分∠BAC且與它的外接圓交于點(diǎn)D,在線段AD上有一點(diǎn)I滿足BD=ID.試問點(diǎn)I是否是三角形ABC的內(nèi)心?若是加以證明;若不是,說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案