【題目】如圖,四邊形ABCO是平行四邊形,OA2,AB8,點Cx軸的正半軸上,將平行四邊形ABCO繞點A順時針旋轉(zhuǎn)得到平行四邊形ADEF,AD恰好經(jīng)過點O,點F恰好落在x軸的負(fù)半軸上.則點D的坐標(biāo)是_____

【答案】3,﹣3

【解析】

根據(jù)平行四邊形的性質(zhì)和旋轉(zhuǎn)的性質(zhì)得出∠DOC60°,可以求得點D的坐標(biāo).

解:作DGOCG,如圖:

由旋轉(zhuǎn)可得:OAAF2,∠BAO=∠FAO

∴∠AFO=∠AOF,

ABOF,

∴∠BAO=∠OAF,

∴∠BAO=∠AOF=∠AFO=∠FAO

∴△AFO是等邊三角形,

∴∠DOC=∠AOF60°

AO2,ADAB8

OD6,

OGOD3DG,

∴點D的坐標(biāo)為(3,﹣3);

故答案為:(3,﹣3).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線yax2+bx+ca0)的頂點為A(﹣2,0),且經(jīng)過點B(﹣59),與y軸交于點C,連接ABAC,BC

1)求該拋物線對應(yīng)的函數(shù)表達(dá)式;

2)點P為該拋物線上點A與點B之間的一動點.

①若SPABSABC,求點P的坐標(biāo).

②如圖②,過點Bx軸的垂線,垂足為D,連接AP并延長,交BD于點M.連接BP并延長,交AD于點N.試說明DNDM+DB)為定值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC 中,∠C=90°,AC=BC,AB=8,點DAB的中點,若直角MDN繞點D旋轉(zhuǎn)分別交AC于點E,交BC于點F,則下列說法:①AE="CF" ②EC+CF=③DE="DF" ④△ECF的面積為一個定值,則EF的長也是一個定值,其中正確的是( )

A.①②B.①③C.①②③D.①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】射陽縣實驗初中為了解全校學(xué)生上學(xué)期參加社區(qū)活動的情況,學(xué)校隨機(jī)調(diào)查了本校50名學(xué)生參加社區(qū)活動的次數(shù),并將調(diào)查所得的數(shù)據(jù)整理如下:

參加社區(qū)活動次數(shù)的頻數(shù)、頻率分布表

活動次數(shù)x

頻數(shù)

頻率

0x≤3

10

0.20

3x≤6

a

0.24

6x≤9

16

0.32

9x≤12

6

0.12

12x≤15

m

b

15x≤18

2

n

根據(jù)以上圖表信息,解答下列問題:

1)表中a=  ,b=  ;

2)請把頻數(shù)分布直方圖補充完整(畫圖后請標(biāo)注相應(yīng)的數(shù)據(jù));

3)若該校共有1200名學(xué)生,請估計該校在上學(xué)期參加社區(qū)活動超過6次的學(xué)生有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在線段AB的同側(cè)作射線AM和BN,若MAB與NBA的平分線分別交射線BN,AM于點E,F(xiàn),AE和BF交于點P.如圖,點點同學(xué)發(fā)現(xiàn)當(dāng)射線AM,BN交于點C;且ACB=60°時,有以下兩個結(jié)論:

①∠APB=120°;AF+BE=AB.

那么,當(dāng)AMBN時:

(1)點點發(fā)現(xiàn)的結(jié)論還成立嗎?若成立,請給予證明;若不成立,請求出APB的度數(shù),寫出AF,BE,AB長度之間的等量關(guān)系,并給予證明;

(2)設(shè)點Q為線段AE上一點,QB=5,若AF+BE=16,四邊形ABEF的面積為32,求AQ的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線yax2+bx+c經(jīng)過A03)、B(﹣1,0)、D2,3),拋物線與x軸的另一交點為E,點P為直線AE上方拋物線上一動點,設(shè)點P的橫坐標(biāo)為t

1)求拋物線的表達(dá)式;

2)當(dāng)t為何值時,△PAE的面積最大?并求出最大面積;

3)是否存在點P使△PAE為直角三角形?若存在,求出t的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(10分)某電腦公司經(jīng)銷甲種型號電腦,受經(jīng)濟(jì)危機(jī)影響,電腦價格不斷下降.今年三月份的電腦售價比去年同期每臺降價1000元,如果賣出相同數(shù)量的電腦,去年銷售額為10萬元,今年銷售額只有8萬元.

1)今年三月份甲種電腦每臺售價多少元?

2)為了增加收入,電腦公司決定再經(jīng)銷乙種型號電腦,已知甲種電腦每臺進(jìn)價為3500元,乙種電腦每臺進(jìn)價為3000元,公司預(yù)計用不多于5萬元且不少于4.8萬元的資金購進(jìn)這兩種電腦共15臺,有幾種進(jìn)貨方案?

3)如果乙種電腦每臺售價為3800元,為打開乙種電腦的銷路,公司決定每售出一臺乙種電腦,返還顧客現(xiàn)金元,要使(2)中所有方案獲利相同,值應(yīng)是多少?此時,哪種方案對公司更有利?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)形展唱紅歌比賽活動,九年級(1)、(2)班根據(jù)初賽成績,各選出5名選手參加復(fù)賽,兩個班各選出的5名選手的復(fù)賽成績?nèi)鐖D所示.

1)根據(jù)圖示填寫下表:

班級

平均數(shù)(分)

中位數(shù)(分)

眾數(shù)(分)

九(1

85

九(2

85

100

2)結(jié)合兩班復(fù)賽成績的平均數(shù)和中位數(shù),分析哪個班級的復(fù)賽成績較好;

3)計算兩班復(fù)賽成績的方差.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為落實素質(zhì)教育要求,促進(jìn)學(xué)生全面發(fā)展,我市某中學(xué)2016年投資11萬元新增一批電腦,計劃以后每年以相同的增長率進(jìn)行投資,2018年投資18.59萬元.

1)求該學(xué)校為新增電腦投資的年平均增長率;

2)從2016年到2018年,該中學(xué)三年為新增電腦共投資多少萬元?

查看答案和解析>>

同步練習(xí)冊答案