在函數(shù)中,我們規(guī)定:當(dāng)自變量增加一個單位時,因變量的增加量稱為函數(shù)的平均變化率.例如,對于函數(shù)y=3x+1,當(dāng)自變量x增加1時,因變量y=3(x+1)+1=3x+4,較之前增加3,故函數(shù)y=3x+1的平均變化率為3.

(1)①列車已行駛的路程s(km)與行駛的時間t(h)的函數(shù)關(guān)系式是s=300t,該函數(shù)的平均變化率是      ;其蘊含的實際意義是       ;
②飛機著陸后滑行的距離y(m)與滑行的時間x(s)的函數(shù)關(guān)系式是y=-1.5x2+60x,求該函數(shù)的平均變化率;
(2)通過比較(1)中不同函數(shù)的平均變化率,你有什么發(fā)現(xiàn);
(3)如圖,二次函數(shù)y=ax2+bx+c的圖像經(jīng)過第一象限內(nèi)的三點A、B、C,過點A、B、C作x軸的垂線,垂足分別為D、E、F,AM⊥BE,垂足為M,BN⊥CF,垂足為N,DE=EF,試探究△AMB與△BNC面積的大小關(guān)系,并說明理由.
(1)①300;列車的速度.②該函數(shù)的變化率為:-3x+58.5
(2)一次函數(shù)的變化率是常量,二次函數(shù)的變化率是變量.
(3)S△AMB<S△BNC

試題分析:(1)①當(dāng)自變量t增加1時,s=300(t+1)=300t+300.所以平均變化率為300.
②該函數(shù)的變化率為:
-1.5(x+1)2+60(x+1)-[-1.5x2+60x]=-3x+58.5.
(2)一次函數(shù)的變化率是常量,二次函數(shù)的變化率是變量. 
(3)∵AM⊥BE,且AD、BE均垂直于x軸,
∴∠ADE=∠DEM=∠EMA=90°,∴四邊形ADEM為矩形,
∴AM=DE.同理可得BN=EF.∵DE=EF,∴AM=BN.
設(shè)DE=EF=n(n>0),當(dāng)x增加n時y增加了w.
則w=a(x+n)2+b(x+n)+c-(ax2+bx+c)=2anx+an2+bn
∵該二次函數(shù)開口向上,∴a>0.
又∵n>0,∴2an>0.∴w隨x的增大而增大.即BM<CN.
∵S△AMB=AM·BM,S△BNC=BN·CN,
∴S△AMB<S△BNC.
點評:本題難度中等,主要考查學(xué)生對題干中所給示例分析總結(jié)規(guī)律的能力。為中考?碱}型,要靈活應(yīng)變。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線=-+5經(jīng)過點C(4,0),與軸交于另一點A,與軸交于點B.

(1)求點A、B的坐標(biāo);
(2)P是軸上一點,△PAB是等腰三角形,試求P點坐標(biāo);
(3)若·Q的半徑為1,圓心Q在拋物線上運動,當(dāng)·Q與軸相切時,求·Q上的點到點B的最短距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,直線與拋物線交于AB兩點,點Ax軸上,點B的橫坐標(biāo)為-8.

(1)求該拋物線的解析式;
(2)點P是直線AB上方的拋物線上一動點(不與點AB重合),過點Px軸的垂線,垂足為C,交直線AB于點D,作PEAB于點E
①設(shè)△PDE的周長為l,點P的橫坐標(biāo)為x,求l關(guān)于x的函數(shù)關(guān)系式,并求出l的最大值;
②連接PA,以PA為邊作如圖所示一側(cè)的正方形APFG.隨著點P的運動,正方形的大小、位置也隨之改變.當(dāng)頂點FG恰好落在y軸上時,求出對應(yīng)的點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,某隧道橫截面的上下輪廓線分別由拋物線對稱的一部分和矩形的一部分構(gòu)成,最大高度為6米,底部寬度為12米. 現(xiàn)以O(shè)點為原點,OM所在直線為x軸建立直角坐標(biāo)系.

(1) 直接寫出點M及拋物線頂點P的坐標(biāo);
(2) 求出這條拋物線的函數(shù)解析式;
(3) 若要搭建一個矩形“支撐架”AD- DC- CB,使C、D點在拋物線上,A、B點在地面OM上,則這個“支撐架”總長的最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中0A=2,0B=4,將△OAB繞點O順時針旋轉(zhuǎn)90°至△OCD,若已知拋物線過點A、D、B.
  
(1)求此拋物線的解析式;
(2)連結(jié)DB,將△COD沿射線DB平移,速度為每秒個單位.
①經(jīng)過多少秒O點平移后的O′點落在線段AB上?
②設(shè)DO的中點為M,在平移的過程中,點M、A、B能否構(gòu)成等腰三角形?若能,求出構(gòu)成等腰三角形時M點的坐標(biāo);若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線經(jīng)過A(4,0),B(1,0),C(0,-2)三點.

(1)求出拋物線的解析式;
(2)P是拋物線上一動點,過PPMx軸,垂足為M,是否存在P點,使得以A,P,M為頂點的三角形與△OAC相似?若存在,請求出符合條件的點P的坐標(biāo);若不存在,請說明理由;
(3)在直線AC上方的拋物線上有一點D,使得△DCA的面積最大,求出點D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知二次函數(shù)中函數(shù)與自變量之間的部分對應(yīng)值如下表所示,點、在函數(shù)圖象上,當(dāng)時,則   (填“”或“”).

 
0
1
2
3
 

 

2
3
2
 
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知二次函數(shù)與一次函數(shù)的圖象交于,則能使成立的的取值范圍是
A.B.
C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

二次函數(shù) y=ax2-ax+1 (a≠0)的圖象與x軸有兩個交點,其中一個交點為(,0),那么另一個交點坐標(biāo)為       

查看答案和解析>>

同步練習(xí)冊答案