(滿分8分)在直角坐標系xOy中,直線l過(1,3)和(3,1)兩點,且與x

軸,y軸分別交于A,B兩點.

(1)求直線l的函數(shù)關系式;

(2)求△AOB的面積.

 

解:(1)設直線l的函數(shù)關系式為,  ① 

把(3,1),(1,3)代入①得   …………2分

解方程組得  

∴直線l的函數(shù)關系式為   ②…………4分

(2)在②中,令 ……6分

  …………8分

解析:略

 

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(本小題滿分10分)如圖,將—矩形OABC放在直角坐際系中,O為坐標原點.點Ax軸正半軸上.點E是邊AB上的—個動點(不與點A、B重合),過點E的反比例函數(shù)的圖象與邊BC交于點F.

(1)若△OAE、△OCF的而積分別為.且,求k的值.

(2)若OA=2,0C=4,問當點E運動到什么位置時,四邊形OAEF的面積最大,其最大值為多少?

 

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012學年湖北省荊門市東寶區(qū)中考模擬數(shù)學卷 題型:解答題

(本小題滿分10分)如圖,將—矩形OABC放在直角坐際系中,O為坐標原點.點Ax軸正半軸上.點E是邊AB上的—個動點(不與點A、B重合),過點E的反比例函數(shù)的圖象與邊BC交于點F.

(1)若△OAE、△OCF的而積分別為.且,求k的值.

(2)若OA=2,0C=4,問當點E運動到什么位置時,四邊形OAEF的面積最大,其最大值為多少?

 

查看答案和解析>>

科目:初中數(shù)學 來源:2011年初中畢業(yè)升學考試(廣西欽州卷)數(shù)學 題型:解答題

(本題滿分8分)已知四邊形ABCD是邊長為4的正方形,以AB為直徑在正方形內(nèi)作半圓,P是半圓上的動點(不與點A、B重合),連接PA、PB、PC、PD.

    (1)如圖①,當PA的長度等于 

時,∠PAB=60°;

              當PA的長度等于    時,△PAD是等腰三角形;

    (2)如圖②,以AB邊所在直線為x軸、AD邊所在直線為y軸,建立如圖所示的直角

坐標系(點A即為原點O),把△PAD、△PAB、△PBC的面積分別記為S1、S2、S3.坐

標為(a,b),試求2 S1 S3-S22的最大值,并求出此時ab的值.

 

查看答案和解析>>

同步練習冊答案