【題目】如圖,在平面直角坐標(biāo)系中,Rt△ABC的斜邊AB在x軸上,點C在y軸上,∠BAC=30°,點A的坐標(biāo)為(﹣3,0),將△ABC沿直線AC翻折,點B的對應(yīng)點D恰好落在反比例函數(shù)的圖象上,則k的值為( 。
A. 2B. ﹣2C. 4D. ﹣4
【答案】B
【解析】
如圖,過點D作DE⊥y軸于點E.由對稱可知CD=BC,易證△DCE≌△BCO(AAS),所以CE=CO,DE=OB,由∠BAC=30°,OA=3,所以OC=OA=,∠OCB=30°,所以OB=OC=1,于是DE=OB=1,CE=OC=,OE=2,|k|=DEOE=1×2=2,反比例函數(shù)圖象在第二象限,因此k=﹣2.
解:如圖,過點D作DE⊥y軸于點E.
由對稱可知CD=BC,
易證△DCE≌△BCO(AAS),
∴CE=CO,DE=OB,
∵∠BAC=30°,OA=3
∴OC=OA=,
∠OCB=30°,
∴OB=OC=1,
∴DE=OB=1,CE=OC=,OE=2,
|k|=DEOE=1×2=2,
∵反比例函數(shù)圖象在第二象限,
∴k=﹣2,
故選:B.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是根據(jù)九年級某班50名同學(xué)一周的鍛煉情況繪制的條形統(tǒng)計圖,下面關(guān)于該班50名同學(xué)一周鍛煉時間的說法錯誤的是( 。
A.平均數(shù)是6
B.中位數(shù)是6.5
C.眾數(shù)是7
D.平均每周鍛煉超過6小時的人數(shù)占該班人數(shù)的一半
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一次函數(shù)y=kx﹣1的圖象經(jīng)過點P,且y的值隨x值的增大而增大,則點P的坐標(biāo)可以為( 。
A. (﹣5,3) B. (1,﹣3) C. (2,2) D. (5,﹣1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若二次函數(shù)y=ax2+bx+c(a≠0)的圖象于x軸的交點坐標(biāo)分別為(x1,0),(x2,0),且x1<x2,圖象上有一點M(x0,y0)在x軸下方,對于以下說法:①b2﹣4ac>0②x=x0是方程ax2+bx+c=y0的解③x1<x0<x2④a(x0﹣x1)(x0﹣x2)<0其中正確的是( 。
A.①③④B.①②④C.①②③D.②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小方與小輝在玩軍棋游戲,他們定義了一種新的規(guī)則,用軍棋中的“工兵”、“連長”、“地雷”比較大小,共有6個棋子,分別為1個“工兵”,2個“連長”,3個“地雷”游戲規(guī)則如下:①游戲時,將棋反面朝上,兩人隨機各摸一個棋子進行比賽,先摸者摸出的棋不放回;②“工兵”勝“地雷”,“地雷”勝“連長”,“連長”勝“工兵”;③相同棋子不分勝負.
(1)若小方先摸,則小方摸到“排長”的事件是 ;若小方先摸到了“連長”,小輝在剩余的5個棋子中隨機摸一個,則這一輪中小方勝小輝的概率為 .
(2)如果先拿走一個“連長”,在剩余的5個棋子中小方先摸一個棋子,然后小輝在剩余的4個棋子中隨機摸一個,求這一輪中小方獲勝的概率 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】大眾服裝店今年4月用4000元購進了一款襯衣若干件,上市后很快售完,服裝店于5月初又購進該款襯衣,進貨量比第一批增加了20%,由于第二批襯衣進貨時價格比第一批襯衣進貨時價格提高了20元,結(jié)果第二批襯衣進貨用了6000元
(1)第一批襯衣進貨時價格是多少?
(2)第一批襯衣售價為120元/件,為保證第二批襯衣的利潤率不低于第一批襯衣的利潤率,那么第二批襯衣每件售價至少是多少元?(提示:利潤=售價﹣成本,利潤率=利潤÷成本×100%)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,某教學(xué)活動小組選定測量小山上方某信號塔PQ的高度,他們在A處測得信號塔頂端P的仰角為45°,信號塔低端Q的仰角為31°,沿水平地面向前走100米到處,測得信號塔頂端P的仰角為68°.求信號塔PQ的高度.(結(jié)果精確到0.1米.參考數(shù)據(jù):sin68°≈ 0.93,cos68° ≈ 0.37,tan68° ≈ 2.48,tan31° ≈ 0.60,sin31° ≈ 0.52,cos31°≈0.86)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB∥DC,AB=AD,對角線AC,BD交于點O,AC平分∠BAD,過點C作CE⊥AB交AB的延長線于點E,連接OE.
(1)求證:四邊形ABCD是菱形;
(2)若AB=,BD=2,求OE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是一垂直于水平面的建筑物,某同學(xué)從建筑物底端B出發(fā),先沿水平方向向右行走20米到達點C,再經(jīng)過一段坡度(或坡比)為i=1:0.75、坡長為10米的斜坡CD到達點D,然后再沿水平方向向右行走40米到達點E(A,B,C,D,E均在同一平面內(nèi)).在E處測得建筑物頂端A的仰角為24°,則建筑物AB的高度約為(參考數(shù)據(jù):sin24°≈0.41,cos24°≈0.91,tan24°=0.45)( 。
A. 21.7米 B. 22.4米 C. 27.4米 D. 28.8米
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com