【題目】如圖,已知EF⊥AB,CD⊥AB,下列說法:①EF∥CD;②∠B+∠BDG=180°;③若∠1=∠2,則∠1=∠BEF;④若∠ADG=∠B,則∠DGC+∠ACB=180°,其中說法正確的是( 。
A. ①②B. ③④C. ①②③D. ①③④
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)O,A在數(shù)軸上表示的數(shù)分別是0,l,將線段OA分成1000等份,其分點(diǎn)由左向右依次為M1,M2…M999;將線段OM1分成1000等份,其分點(diǎn)由左向右依次為N1,N2…N999;將線段ON1分成1000等份,其分點(diǎn)由左向右依次為P1,P2…P999.則點(diǎn)P314所表示的數(shù)用科學(xué)記數(shù)法表示為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,厘米,厘米,點(diǎn)為的中點(diǎn).
(1)如果點(diǎn)在線段上以厘米秒的速度由向點(diǎn)運(yùn)動(dòng),同時(shí)點(diǎn)在線段上由點(diǎn)向點(diǎn)運(yùn)動(dòng).
①若點(diǎn)的運(yùn)動(dòng)速度與點(diǎn)的運(yùn)動(dòng)速度相等,秒鐘時(shí),與是否全等?請(qǐng)說明理由;
②點(diǎn)的運(yùn)動(dòng)速度與點(diǎn)的運(yùn)動(dòng)速度不相等,當(dāng)點(diǎn)的運(yùn)動(dòng)速度為多少時(shí),能夠使?并說明理由;
(2)若點(diǎn)以②中的運(yùn)動(dòng)速度從點(diǎn)出發(fā),點(diǎn)以原來運(yùn)動(dòng)速度從點(diǎn)同時(shí)出發(fā),都逆時(shí)針沿的三邊運(yùn)動(dòng),求多長(zhǎng)時(shí)間點(diǎn)與點(diǎn)第一次在的哪條邊上相遇?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知AB=2,C是AB上一點(diǎn),四邊形ACDE和四邊形CBFG,都是正方形,設(shè)BC=x,
(1)AC=______;
(2)設(shè)正方形ACDE和四邊形CBFG的總面積為S,用x表示S的函數(shù)解析式為S=_____.
(3)總面積S有最大值還是最小值?這個(gè)最大值或最小值是多少?
(4)總面積S取最大值或最小值時(shí),點(diǎn)C在AB的什么位置?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】三角形紙片ABC中,∠C=90°,AC=1,BC=2.按圖①的方式在這張紙片中剪去一個(gè)盡可能大的正方形,稱為第1次剪取,記余下的兩個(gè)三角形面積和為S1;按圖②的方式在余下的Rt△ADF和Rt△BDE中,分別剪去盡可能大的正方形,稱為第2次剪取,記余下的兩個(gè)三角形面積和為S2;繼續(xù)操作下去…….
(1)如圖①,求和S1的值;
(2)第n次剪取后,余下的所有三角形面積之和Sn為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某莊有甲、乙兩家草莓采摘園的草莓銷售價(jià)格相同,春節(jié)期間,兩家采摘園將推出優(yōu)惠方案,甲園的優(yōu)惠方案是:游客進(jìn)園需購(gòu)買門票,采摘的草莓六折優(yōu)惠;乙園的優(yōu)惠方案是:游客進(jìn)園不需購(gòu)買門票,采摘的草莓超過一定數(shù)量后,超過部分打折優(yōu)惠.優(yōu)惠期間,某游客的草莓采摘量為(千克),在甲園所需總費(fèi)用為(元),在乙園所需總費(fèi)用為(元),、與之間的函數(shù)關(guān)系如圖所示.
(1)甲采摘園的門票是_____元,兩個(gè)采摘園優(yōu)惠前的草莓單價(jià)是每千克____元;
(2)當(dāng)時(shí),求與的函數(shù)表達(dá)式;
(3)游客在“春節(jié)期間”采摘多少千克草莓時(shí),甲、乙兩家采摘園的總費(fèi)用相同.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個(gè)不透明的袋子中裝有僅顏色不同的10個(gè)小球,其中紅球4個(gè),黑球6個(gè).
(1)先從袋子中取出m(m>1)個(gè)紅球,再?gòu)拇又须S機(jī)摸出1個(gè)球,將“摸出黑球”記為事件A,請(qǐng)完成下列表格;
(2)先從袋子中取出m個(gè)紅球,再放入m個(gè)一樣的黑球并搖勻,隨機(jī)摸出1個(gè)黑球的概率等于,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知DE∥BC,CD是∠ACB的平分線,∠ADE=70°,∠ACB=40°,求∠EDC和∠BDC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知x1,x2是關(guān)于x的一元二次方程x2-2(m+1)x+m2+5=0的兩實(shí)根.
(1)若(x1-1)(x2-1)=28,求m的值;
(2)已知等腰△ABC的一邊長(zhǎng)為7,若x1,x2恰好是△ABC另外兩邊的邊長(zhǎng),求這個(gè)三角形的周長(zhǎng).
【答案】(1)m的值為6;(2)17.
【解析】試題分析:
(1)由題意和根與系數(shù)的關(guān)系可得:x1+x2=2(m+1),x1x2=m2+5;由(x1-1)(x2-1)=28,可得:x1x2-(x1+x2)=27;從而得到:m2+5-2(m+1)=27,解方程求得m的值,再由“一元二次方程根的判別式”進(jìn)行檢驗(yàn)即可得到m的值;
(2)①當(dāng)7為腰長(zhǎng)時(shí),則方程的兩根中有一根為7,代入方程可解得m的值(此時(shí)m的取值需滿足根的判別式△ ),將m的值代入原方程,可求得兩根(此時(shí)兩根和7需滿足三角形三邊之間的關(guān)系),從而可求得等腰三角形的周長(zhǎng);
②當(dāng)7為底邊時(shí),則方程的兩根相等,由此可得“根的判別式△=0”,從而可得關(guān)于m的方程,解方程求得m的值,代入原方程可求得方程的兩根,再由三角形三邊之間的關(guān)系檢驗(yàn)即可.
試題解析:
(1)(x1-1)(x2-1)=28,即x1x2-(x1+x2)=27,而x1+x2=2(m+1),x1x2=m2+5,
∴m2+5-2(m+1)=27,
解得m1=6,m2=-4,
又Δ=[-2(m+1)]2-4×1×(m2+5)≥0時(shí),m≥2,
∴m的值為6;
(2) 若7為腰長(zhǎng),則方程x2-2(m+1)x+m2+5=0的一根為7,
即72-2×7×(m+1)+m2+5=0,
解得m1=10,m2=4,
當(dāng)m=10時(shí),方程x2-22x+105=0,根為x1=15,x2=7,不符合題意,舍去.
當(dāng)m=4時(shí),方程為x2-10x+21=0,根為x1=3,x2=7,此時(shí)周長(zhǎng)為7+7+3=17
若7為底邊,則方程x2-2(m+1)x+m2+5=0有兩等根,
∴Δ=0,解得m=2,此時(shí)方程為x2-6x+9=0,根為x1=3,x2=3,3+3<7,不成立,
綜上所述,三角形周長(zhǎng)為17
點(diǎn)睛:(1)一元二次方程根與系數(shù)的關(guān)系成立的前提條件是方程要有實(shí)數(shù)根,即“根的判別式△ ”;(2)涉及三角形邊長(zhǎng)的問題中,解得的結(jié)果都需要用“三角形三邊之間的關(guān)系”檢驗(yàn),看三條線段能否圍成三角形.
【題型】解答題
【結(jié)束】
21
【題目】如圖,已知在△ABC中,D是AB的中點(diǎn),且∠ACD=∠B,若 AB=10,求AC的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com