【題目】如圖,在平面直角坐標(biāo)中,點(diǎn)A的坐標(biāo)為(1,1),OA=AC,∠OAC=90°,點(diǎn)D為x軸上一動(dòng)點(diǎn).以AD為邊在AD的右側(cè)作正方形ADEF.
(1)當(dāng)點(diǎn)D在線段OC上時(shí)(不與點(diǎn)O、C重合),則線段CF與OD之間的數(shù)量關(guān)系為 ;位置關(guān)系為 ,
(2)當(dāng)點(diǎn)D在線段OC的延長線上時(shí),(1)中的結(jié)論是否成立?若成立,請說明理由;若不成立,請舉一反例;
(3)設(shè)D點(diǎn)坐標(biāo)為(t,0),當(dāng)D點(diǎn)從O點(diǎn)運(yùn)動(dòng)到C點(diǎn)時(shí),用含t的代數(shù)式表示E點(diǎn)坐標(biāo),并直接寫出E點(diǎn)所經(jīng)過的路徑長.
【答案】(1)相等、垂直;(2)結(jié)論成立;(3).
【解析】
試題
(1)相等、垂直
(2)結(jié)論成立
證明:∵OA=AC,∠OAC=90°,四邊形ADEF為正方形
∴∠OAD=∠CAF,AD=AF
∴△AOD≌ACF
∴OD=CF
∠ACF=AOD=45°
∵∠ACO=45°,∴∠OCF=90°,∴CF⊥OD
(3)過A點(diǎn)作AH⊥x軸,H為垂點(diǎn),過E作EM⊥x軸于M
∴∠ADH=∠DEM,∠AHD=∠DME=90°,AD=DE,
∴△ADH≌△DEM
∴AH=DM=1,DH=ME=1-t
∴E(1+t,t-1)(0≤t≤2)
∴x=1+t,y=t-1
∴y=x-2
∴E在直線y=x-2上運(yùn)動(dòng),1≤x≤3
∴E點(diǎn)所走路徑長為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形網(wǎng)格中,每個(gè)小正方形的邊長都是1,每個(gè)小正方形的頂點(diǎn)叫做格點(diǎn).網(wǎng)格中有一個(gè)格點(diǎn)△ABC(即三角形的頂點(diǎn)都在格點(diǎn)上).
(1)在圖中作出△ABC關(guān)于直線l對稱的△A1B1C1 (要求A與A1,B與B1,C與C1相對應(yīng));
(2)求△ABC的面積;
(3)在直線l上找一點(diǎn)P,使得△PAC的周長最。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在我們認(rèn)識的多邊形中,有很多軸對稱圖形.有些多邊形,邊數(shù)不同對稱軸的條數(shù)也不同;有些多邊形,邊數(shù)相同但卻有不同數(shù)目的對稱軸.回答下列問題:
(1)非等邊的等腰三角形有________條對稱軸,非正方形的長方形有________條對稱軸,等邊三角形有___________條對稱軸;
(2)觀察下列一組凸多邊形(實(shí)線畫出),它們的共同點(diǎn)是只有1條對稱軸,其中圖1-2和圖1-3都可以看作由圖1-1修改得到的,仿照類似的修改方式,請你在圖1-4和圖1-5中,分別修改圖1-2和圖1-3,得到一個(gè)只有1條對稱軸的凸五邊形,并用實(shí)線畫出所得的凸五邊形;
(3)小明希望構(gòu)造出一個(gè)恰好有2條對稱軸的凸六邊形,于是他選擇修改長方形,圖2中是他沒有完成的圖形,請用實(shí)線幫他補(bǔ)完整個(gè)圖形;
(4)請你畫一個(gè)恰好有3條對稱軸的凸六邊形,并用虛線標(biāo)出對稱軸.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠1=∠2,要得到△ABD≌△ACE,從下列條件中補(bǔ)選一個(gè),則錯(cuò)誤的是( )
A.AB=AC B.DB=EC C.∠ADB=∠AEC D.∠B=∠C
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校數(shù)學(xué)興趣小組的成員小華對本班上學(xué)期期末考試數(shù)學(xué)成績(成績?nèi)≌麛?shù),滿分為100分)作了統(tǒng)計(jì)分析,繪制成如下頻數(shù)分布表和頻數(shù)分布直方圖.
請你根據(jù)圖表提供的信息,解答下列問題:
(1)頻數(shù)分布表中a= ,b= ;
(2)補(bǔ)全頻數(shù)分布直方圖;
(3)數(shù)學(xué)老師準(zhǔn)備從不低于90分的學(xué)生中選1人介紹學(xué)習(xí)經(jīng)驗(yàn),那么取得了93分的小華被選上的概率是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD的對角線AC、BD相交于點(diǎn)O,過點(diǎn)D作DE∥AC且DE=AC,連接AE交OD于點(diǎn)F,連接CE、OE.
(1)求證:OE=CD;
(2)若菱形ABCD的邊長為2,∠ABC=60°,求AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,AB=12,AD=8,∠ABC的平分線交CD于點(diǎn)F,交AD的延長線于點(diǎn)E,CG⊥BE,垂足為G,若EF=2,則線段CG的長為( )
A.
B.4
C.2
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為2的正方形ABCD中剪去一個(gè)邊長為1的小正方形CEFG,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿A→D→E→F→G→B的路線繞多邊形的邊勻速運(yùn)動(dòng)到點(diǎn)B時(shí)停止(不含點(diǎn)A和點(diǎn)B),則△ABP的面積S隨著時(shí)間t變化的函數(shù)圖象大致是( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com