【題目】某校八年級320名學(xué)生在電腦培訓(xùn)前后各參加了一次水平相同的考試,考試成績都以統(tǒng)一標(biāo)準(zhǔn)劃分成不及格”“及格優(yōu)秀三個(gè)等級.為了解電腦培訓(xùn)的效果,用抽簽方式得到其中32名學(xué)生培訓(xùn)前后兩次成績的等級,并繪制成如圖所示的統(tǒng)計(jì)圖,請結(jié)合圖中信息估計(jì)該校整個(gè)八年級學(xué)生中,培訓(xùn)后考試成績的等級為及格優(yōu)秀的學(xué)生共有______名.

【答案】240

【解析】

結(jié)合統(tǒng)計(jì)圖,先計(jì)算出樣本中及格優(yōu)秀的學(xué)生占32的百分比,然后乘以總數(shù)320即可.

解:抽到的考生培訓(xùn)后的及格與優(yōu)秀率為(16+8÷32=75%,
由此,可以估計(jì)八年級320名學(xué)生培訓(xùn)后的及格與優(yōu)秀率為75%
所以,八年級320名學(xué)生培訓(xùn)后的及格與優(yōu)秀人數(shù)為75%×320=240名.
故答案為:240

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,ABCD為長方形,其中點(diǎn)A、C坐標(biāo)分別為(﹣4,2)、(1,﹣4),且ADx軸,交y軸于M點(diǎn),ABx軸于N.

(1)求B、D兩點(diǎn)坐標(biāo)和長方形ABCD的面積;

(2)一動點(diǎn)PA出發(fā)(不與A點(diǎn)重合),以個(gè)單位/秒的速度沿ABB點(diǎn)運(yùn)動,在P點(diǎn)運(yùn)動過程中,連接MP、OP,請直接寫出∠AMP、MPO、PON之間的數(shù)量關(guān)系;

(3)是否存在某一時(shí)刻t,使三角形AMP的面積等于長方形面積的?若存在,求t的值并求此時(shí)點(diǎn)P的坐標(biāo);若不存在請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面是馬小虎同學(xué)做的一道題:

解方程:

解:①去分母,得4(2x1)123(x+2)

②去括號,得8x4123x+6

③移項(xiàng),得8x+3x12+6+4

④合并同類項(xiàng),得11x22

⑤系數(shù)化為1,得x=﹣2

1)上面的解題過程中最早出現(xiàn)錯(cuò)誤的步驟(填序號)  

2)請認(rèn)真正確解方程:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(題文)如圖,某數(shù)學(xué)活動小組為測量學(xué)校旗桿AB的高度,從旗桿正前方2m處的點(diǎn)C出發(fā),沿斜面坡度i=1的斜坡CD前進(jìn)4m到達(dá)點(diǎn)D,在點(diǎn)D處安置測角儀,測得旗桿頂部A的仰角為37°,量得儀器的高DE1.5 m.已知A,B,C,DE在同一平面內(nèi),ABBC,ABDE.求旗桿AB的高度.(參考數(shù)據(jù):sin37°≈,cos37°≈,tan37°≈計(jì)算結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在我市開展的陽光體育跳繩活動中,為了了解中學(xué)生跳繩活動的開展情況,隨機(jī)抽查了全市七年級部分同學(xué)1分鐘跳繩的次數(shù),將抽查結(jié)果進(jìn)行統(tǒng)計(jì),并繪制兩個(gè)不完整的統(tǒng)計(jì)圖.請根據(jù)圖中提供的信息,解答下列問題:

1)本次共抽查了多少名學(xué)生?

2)請補(bǔ)全頻數(shù)分布直方圖空缺部分,其中扇形統(tǒng)計(jì)圖中表示跳繩次數(shù)范圍135≤x155的扇形的圓心角度數(shù)為 度.

3)若本次抽查中,跳繩次數(shù)在125次以上(含125次)為優(yōu)秀,請你估計(jì)全市28000名七年級學(xué)生中有多少名學(xué)生的成績?yōu)閮?yōu)秀?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知y+1x+2成正比例,且當(dāng)x=4時(shí),y=4

(1)y關(guān)于x的函數(shù)關(guān)系式;

(2)若點(diǎn)(a2)(2,b)均在(1)中函數(shù)圖像上,求a、b的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtAEBRtAFC中,∠E=F=90°,BE=CFBEAC相交于點(diǎn)M,與CF相交于點(diǎn)D,ABCF相交于點(diǎn)N,∠EAC=FAB.有下列結(jié)論:①∠B=C;②CD=DN;③CM=BN;④△ACN≌△ABM.其中正確結(jié)論的序號是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,EAB的中點(diǎn),AD//EC,AED=B.

(1)求證:AED≌△EBC;

(2)當(dāng)AB=6時(shí),求CD的長.

查看答案和解析>>

同步練習(xí)冊答案