【題目】小剛根據(jù)學(xué)習(xí)“數(shù)與式”的經(jīng)驗(yàn),想通過(guò)由“特殊到一般”的方法探究下面二次根式的運(yùn)算規(guī)律.
以下是小剛的探究過(guò)程,請(qǐng)補(bǔ)充完整;
(1)具體運(yùn)算,發(fā)現(xiàn)規(guī)律.
特例1:;特例2:;特例3:;特例4: (舉一個(gè)符合上述運(yùn)算特征的例子)
(2)觀察、歸納,得出猜想.
如果n為正整數(shù),用含n的式子表示這個(gè)運(yùn)算規(guī)律; .
(3)證明猜想,確認(rèn)猜想的正確性.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用n邊形的對(duì)角線把n邊形分割成(n-2)個(gè)三角形,共有多少種不同的分割方案(n≥4)?
(探究)為了解決上面的數(shù)學(xué)問(wèn)題,我們采取一般問(wèn)題特殊化的策略,先從最簡(jiǎn)單情形入手,再逐次遞進(jìn)轉(zhuǎn)化,最后猜想得出結(jié)論.不妨假設(shè)n邊形的分割方案有Pn種.
探究一:用四邊形的對(duì)角線把四邊形分割成2個(gè)三角形,共有多少種不同的分割方案?
如圖①,圖②,顯然,只有2種不同的分割方案.所以,P4=2.
探究二:用五邊形的對(duì)角線把五邊形分割成3個(gè)三角形,共有多少種不同的分割方案?
不妨把分割方案分成三類:
第1類:如圖③,用A,E與B連接,先把五邊形分割轉(zhuǎn)化成1個(gè)三角形和1個(gè)四邊形,再把四邊形分割成2個(gè)三角形,由探究一知,有P4種不同的分割方案,所以,此類共有P4種不同的分割方案.
第2類:如圖④,用A,E與C連接,把五邊形分割成3個(gè)三角形,有1種不同的分割方案,可視為種分割方案.
第3類:圖⑤,用A,E與D連接,先把五邊形分割轉(zhuǎn)化成1個(gè)三角形和1個(gè)四邊形,再把四邊形分割成2個(gè)三角形,由探究一知,有P4種不同的分割方案,所以,此類共有P4種不同的分割方案.
所以,P5 =++=(種)
探究三:用六邊形的對(duì)角線把六邊形分割成4個(gè)三角形,共有多少種不同的分割方案?
不妨把分割方案分成四類:
第1類:如圖⑥,用A,F(xiàn)與B連接,先把六邊形分割轉(zhuǎn)化成1個(gè)三角形和1個(gè)五邊形,再把五邊形分割成3個(gè)三角形,由探究二知,有P5種不同的分割方案.所以,此類共有P5種不同的分割方案.
第2類:如圖⑦,用A,F(xiàn)與C連接,先把六邊形分割轉(zhuǎn)化成2個(gè)三角形和1個(gè)四邊形.再把四邊形分割成2個(gè)三角形,由探究一知,有P4種不同的分割方案.所以,此類共有P4種分割方案
第3類:如圖⑧,用A,F(xiàn)與D連接,先把六邊形分割轉(zhuǎn)化成2個(gè)三角形和1個(gè)四邊形.再把四邊形分割成2個(gè)三角形,由探究一知,有P4種不同的分割方案.所以,此類共有P4種分割方案.
第4類:如圖⑨,用A,F(xiàn)與E連接,先把六邊形分割轉(zhuǎn)化成1個(gè)三角形和1個(gè)五邊形.再把五邊形分割成3個(gè)三角形,由探究二知,有P5種不同的分割方案.所以,此類共有P5種分割方案.
所以,P6 =(種)
探究四:用七邊形的對(duì)角線把七邊形分割成5個(gè)三角形,則P7與P6的關(guān)系為:
P7 = ,共有_____種不同的分割方案.……
(結(jié)論)用n邊形的對(duì)角線把n邊形分割成(
(應(yīng)用)用八邊形的對(duì)角線把八邊形分割成6個(gè)三角形,共有多少種不同的分割方案? (應(yīng)用上述結(jié)論,寫(xiě)出解答過(guò)程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“五一”假期,某火車客運(yùn)站旅客流量不斷增大,旅客往往需要長(zhǎng)時(shí)間排隊(duì)等候檢票.經(jīng)調(diào)查發(fā)現(xiàn),在車站開(kāi)始檢票時(shí),有640人排隊(duì)檢票.檢票開(kāi)始后,仍有旅客繼續(xù)前來(lái)排隊(duì)檢票進(jìn)站.設(shè)旅客按固定的速度增加,檢票口檢票的速度也是固定的.檢票時(shí),每分鐘候車室新增排隊(duì)檢票進(jìn)站16人,每分鐘每個(gè)檢票口檢票14人.已知檢票的前a分鐘只開(kāi)放了兩個(gè)檢票口.某一天候車室排隊(duì)等候檢票的人數(shù)y(人)與檢票時(shí)間x(分鐘)的關(guān)系如圖所示.
(1)求a的值.
(2)求檢票到第20分鐘時(shí),候車室排隊(duì)等候檢票的旅客人數(shù).
(3)若要在開(kāi)始檢票后15分鐘內(nèi)讓所有排隊(duì)的旅客都能檢票進(jìn)站,以便后來(lái)到站的旅客隨到隨檢,問(wèn)檢票一開(kāi)始至少需要同時(shí)開(kāi)放幾個(gè)檢票口?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線y=ax2﹣5ax+4a與x軸交于A、B(A點(diǎn)在B點(diǎn)的左側(cè))與y軸交于點(diǎn)C.
(1)如圖1,連接AC、BC,若△ABC的面積為3時(shí),求拋物線的解析式;
(2)如圖2,點(diǎn)P為第四象限拋物線上一點(diǎn),連接PC,若∠BCP=2∠ABC時(shí),求點(diǎn)P的橫坐標(biāo);
(3)如圖3,在(2)的條件下,點(diǎn)F在AP上,過(guò)點(diǎn)P作PH⊥x軸于H點(diǎn),點(diǎn)K在PH的延長(zhǎng)線上,AK=KF,∠KAH=∠FKH,PF=﹣4 a,連接KB并延長(zhǎng)交拋物線于點(diǎn)Q,求PQ的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,小敏同學(xué)想測(cè)量一棵大樹(shù)的高度.她站在B處仰望樹(shù)頂,測(cè)得仰角為30°,再往大樹(shù)的方向前進(jìn)4m,測(cè)得仰角為60°,已知小敏同學(xué)身高(AB)為1.6m,則這棵樹(shù)的高度為( )(結(jié)果精確到0.1m, ≈1.73).
A.3.5m
B.3.6m
C.4.3m
D.5.1m
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】天封塔歷史悠久,是寧波著名的文化古跡.如圖,從位于天封塔的觀測(cè)點(diǎn)C測(cè)得兩建筑物底部A,B的俯角分別為45°和60°,若此觀測(cè)點(diǎn)離地面的高度為51米,A,B兩點(diǎn)在CD的兩側(cè),且點(diǎn)A,D,B在同一水平直線上,求A,B之間的距離(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線與軸、軸分別交于點(diǎn),.點(diǎn)的坐標(biāo)為(,0),點(diǎn) 的坐標(biāo)為(,0).
(1)求的值;
(2)若點(diǎn)(,)是第二象限內(nèi)的直線上的一個(gè)動(dòng)點(diǎn).當(dāng)點(diǎn)運(yùn)動(dòng)過(guò)程中,試寫(xiě)出的面積與的函數(shù)關(guān)系式,并寫(xiě)出自變量的取值范圍;
(3)探究:當(dāng)運(yùn)動(dòng)到什么位置時(shí),的面積為,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某體育商店購(gòu)進(jìn)一批甲、乙兩種足球,已知3個(gè)甲種足球的進(jìn)價(jià)與2個(gè)乙種足球的進(jìn)價(jià)的和為142元,2個(gè)甲種足球的進(jìn)價(jià)與4個(gè)乙種足球的進(jìn)價(jià)的和為164元.
(1)求每個(gè)甲、乙兩種足球的進(jìn)價(jià)分別是多少?
(2)如果購(gòu)進(jìn)甲種足球超過(guò)10個(gè),超出部分可以享受7折優(yōu)惠.商場(chǎng)決定在甲、乙兩種足球選購(gòu)其中一種,且數(shù)量超過(guò)10個(gè),試幫助體育商場(chǎng)判斷購(gòu)進(jìn)哪種足球省錢(qián).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)A、B的坐標(biāo)分別是(0,3)、(﹣4,0),
(1)將△AOB繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到△AEF,點(diǎn)O,B對(duì)應(yīng)點(diǎn)分別是E,F(xiàn),請(qǐng)?jiān)趫D中畫(huà)出△AEF,并寫(xiě)出E、F的坐標(biāo);
(2)以O(shè)點(diǎn)為位似中心,將△AEF作位似變換且縮小為原來(lái)的 ,在網(wǎng)格內(nèi)畫(huà)出一個(gè)符合條件的△A1E1F1 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com