A、B兩碼頭相距150千米,甲客船順流由A航行到B,乙客船逆流由B到A,若甲、乙兩客船在靜水中的速度相同,同時(shí)出發(fā),它們航行的路程y(千米)與航行時(shí)間x(時(shí))的關(guān)系如圖所示.

(1)求客船在靜水中的速度及水流速度;
(2)一艘貨輪由A碼頭順流航行到B碼頭,貨輪比客船早2小時(shí)出發(fā),貨輪在靜水中的速度為10千米/時(shí),在此坐標(biāo)系中畫出貨輪航程y(千米)與時(shí)間x(時(shí))的關(guān)系圖象,并求貨輪與客船乙相遇時(shí)距A碼頭的路程。

(1)靜水中的速度為20千米/時(shí),水流速度為5千米/時(shí);(2)90千米.

解析試題分析:此題涉及船速,水速,順風(fēng),逆風(fēng)問題,解答時(shí)一定要考慮是順風(fēng)還是逆向行駛,不能把凈水速誤認(rèn)為是船速,另外會(huì)求解函數(shù)的解析式,會(huì)畫簡單的函數(shù)圖形.(1)由圖象中路程與時(shí)間的關(guān)系可得客船在靜水中的順?biāo),逆水速度,由于兩客船在靜水中的速度相同,又知水流速度不變,進(jìn)而可得到關(guān)于速度的關(guān)系,可求解靜水中的速度及水速;(2)貨輪順風(fēng)行駛,可得其速度,由有時(shí)間關(guān)系可得貨輪行駛的函數(shù)關(guān)系式,進(jìn)而可求解客輪與貨輪之間距離的問題.
試題解析:
解:(1)由圖象知,甲船順流航行6小時(shí)的路程為150千米,所以順流航行的速度為150÷6 =25千米/時(shí);乙船逆流航行10小時(shí)的路程為150千米,所以逆流航行的速度為150÷10 =15千米/時(shí)
由于兩客船在靜水中的速度相同,又知水流速度不變,所以設(shè)客船在靜水中的速度為a千米/時(shí),水流的速度為b千米/時(shí),列方程組得:
,解得:
答:客船在靜水中的速度為20千米/時(shí),水流速度為5千米/時(shí).
(2)由題意知,貨輪順流航行的速度為10+5=15(千米/時(shí)),又知貨輪提前出發(fā)兩小時(shí),所以該圖象過(0,30),(8,150)兩點(diǎn),圖象如下圖線段DE.設(shè)DE的解析式為y=k1x+b1
,解得:
∴直線DE的解析式是:
設(shè)BC的解析式為y=k2x+b2
,解得:
∴BC的解析式為y=-15x+150
解方程組
答:貨輪與客船乙相遇時(shí)距A碼頭的路程是90千米.

考點(diǎn):一次函數(shù)的應(yīng)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

某樓盤一樓是車庫(暫不出售),二樓至二十三樓均為商品房(對外銷售),商品房售價(jià)方案如下:第八層售價(jià)為3 000元/米2,從第八層起每上升一層,每平方米的售價(jià)增加40元;反之,樓層每下降一層,每平方米的售價(jià)減少20元.已知商品房每套面積均為120平方米,開發(fā)商為購買者制定了兩種購房方案:
方案一:購買者先交納首付金額(商品房總價(jià)的30%),再辦理分期付款(即貸款).
方案二:購買者若一次付清所有房款,則享受8%的優(yōu)惠,并免收五年物業(yè)管理費(fèi)(已知每月物業(yè)管理費(fèi)為a元)
(1)請寫出每平方米售價(jià)y(元/米2)與樓層x(2≤x≤23,x是正整數(shù))之間的函數(shù)解析式.
(2)小張已籌到120 000元,若用方案一購房,他可以購買哪些樓層的商品房呢?
(3)有人建議老王使用方案二購買第十六層,但他認(rèn)為此方案還不如不免收物業(yè)管理費(fèi)而直接享受9%的優(yōu)惠劃算.你認(rèn)為老王的說法一定正確嗎?請用具體數(shù)據(jù)闡明你的看法.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

在國道202公路改建工程中,某路段長4000米,由甲乙兩個(gè)工程隊(duì)擬在30天內(nèi)(含30天)合作完成.已知兩個(gè)工程隊(duì)各有10名工人(設(shè)甲乙兩個(gè)工程隊(duì)的工人全部參與生產(chǎn),甲工程隊(duì)每天的工作量相同,乙工程隊(duì)每人每天的工作量相同).甲工程隊(duì)1天、乙工程2天共修路200米;甲工程隊(duì)2天、乙工程隊(duì)3天共修路350米.
(1)試問甲乙兩個(gè)工程隊(duì)每天分別修路多少米?
(2)甲乙兩個(gè)工程隊(duì)施工10天后,由于工作需要需從甲隊(duì)抽調(diào)m人去學(xué)習(xí)新技術(shù),總部要求在規(guī)定時(shí)間內(nèi)完成,請問甲隊(duì)可以抽調(diào)多少人?
(3)已知甲工程隊(duì)每天的施工費(fèi)用為0.6萬元,乙工程隊(duì)每天的施工費(fèi)用為0.35萬元,要使該工程的施工費(fèi)用最低,甲乙兩隊(duì)各做多少天?最低費(fèi)用為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

為表彰在某活動(dòng)中表現(xiàn)積極的同學(xué),老師決定購買文具盒與鋼筆作為獎(jiǎng)品.已知5個(gè)文具盒、2支鋼筆共需100元;3個(gè)文具盒、1支鋼筆共需57元.
(1)每個(gè)文具盒、每支鋼筆各多少元?
(2)若本次表彰活動(dòng),老師決定購買10件作為獎(jiǎng)品,若購買x個(gè)文具盒,10件獎(jiǎng)品共需w元,求w與x的函數(shù)關(guān)系式。如果至少需要購買3個(gè)文具盒,本次活動(dòng)老師最多需要花多少錢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知一次函數(shù)y=kx+b與y=mx+n的圖象如圖所示.

(1)寫出關(guān)于x,y的方程組的解;
(2)若0<kx+b<mx+n,根據(jù)圖像寫出x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,已知直線y=-x+4與反比例函數(shù)y=的圖象相交于點(diǎn)A(-2,a),并且與x軸相交于點(diǎn)B。

(1)求a的值;
(2)求反比例函數(shù)的表達(dá)式;
(3)求△AOB的面積。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,已知一次函數(shù)的圖象相交于A點(diǎn),函數(shù)的圖象分別交軸、軸于點(diǎn)B,C,函數(shù)的圖象分別交軸、軸于點(diǎn)E,D.

(1)求A點(diǎn)的坐標(biāo);
(2)求的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

某地區(qū)為了進(jìn)一步緩解交通擁堵問題,決定修建一條長為6千米的公路.如果平均每天的修建費(fèi)y(萬元)與修建天數(shù)x(天)之間在30≤x≤120,具有一次函數(shù)的關(guān)系,如下表所示.

x
50
60
90
120
y
40
38
32
26
(1)求y關(guān)于x的函數(shù)解析式;
(2)后來在修建的過程中計(jì)劃發(fā)生改變,政府決定多修2千米,因此在沒有增減建設(shè)力量的情況下,修完這條路比計(jì)劃晚了15天,求原計(jì)劃每天的修建費(fèi).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知成正比例,且當(dāng)時(shí),.
(1)求的函數(shù)關(guān)系式;
(2)求當(dāng)時(shí)的函數(shù)值.

查看答案和解析>>

同步練習(xí)冊答案