【題目】(1)計算
①
②(π-1)°++-2
(2)解方程
①
②
【答案】(1)①,②-2;(2)①;②.
【解析】
(1)①先把各二次根式化為最簡二次根式,然后把括號內(nèi)合并后進行二次根式的除法運算;
②根據(jù)零指數(shù)冪和負整數(shù)指數(shù)冪的意義以及絕對值的意義化簡,然后合并即可;
(2)①先移項,根據(jù)方程的系數(shù)特點,利用十字相乘法把方程左邊因式分解,然后利用因式分解法解答.
②可以提取公因式(x﹣3),把方程左邊進行因式分解,利用因式分解法解答.
(1)① 原式
;
②原式=1+2+(-5)-2
=3+3-5-2
=-2;
(2)①移項得:=0
因式分解得:(x-1) (2x-1) =0,∴;
②提取公因式,得:(x-3)(x-3+4x)=0
整理,得:(x-3)(5x-3)=0
∴.
【點睛本題考查了二次根式的混合運算、實數(shù)的混合運算以及解一元二次方程的方法.熟練掌握運算法則和一元二次方程的解法是解題的關鍵.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線,與和分別相切于點和點.點和點分別是和上的動點,沿和平移.的半徑為,.下列結論錯誤的是( )
A. B. 和的距離為
C. 若,則與相切 D. 若與相切,則
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】現(xiàn)有兩枚質(zhì)地均勻的正方體骰子,每枚骰子的六個面上都分別標有數(shù)字1、2、3、4、5、6.同時投擲這兩枚骰子,以朝上一面所標的數(shù)字為擲得的結果,那么所得結果之和為9的概率是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】【提出問題】
(1)如圖1,在等邊△ABC中,點M是BC上的任意一點(不含端點B、C),連結AM,以AM為邊作等邊△AMN,連結CN.求證:∠ABC=∠ACN.
【類比探究】
(2)如圖2,在等邊△ABC中,點M是BC延長線上的任意一點(不含端點C),其它條件不變,(1)中結論∠ABC=∠ACN還成立嗎?請說明理由.
【拓展延伸】
(3)如圖3,在等腰△ABC中,BA=BC,點M是BC上的任意一點(不含端點B、C),連結AM,以AM為邊作等腰△AMN,使頂角∠AMN=∠ABC.連結CN.試探究∠ABC與∠ACN的數(shù)量關系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,定義:在直角三角形ABC中,銳角α的鄰邊與對邊的比叫做角α的余切,記作ctanα,即ctanα==,根據(jù)上述角的余切定義,解下列問題:
(1)ctan30°= ;
(2)如圖,已知tanA=,其中∠A為銳角,試求ctanA的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】對于二次函數(shù)y=mx2+(5m+3)x+4m(m為常數(shù)且m≠0)有以下三種說法:
①不論m為何值,函數(shù)圖象一定過定點(﹣1,﹣3);
②當m=﹣1時,函數(shù)圖象與坐標軸有3個交點;
③當m<0,x≥﹣時,函數(shù)y隨x的增大而減。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一袋裝有編號為1,2,3的三個形狀、大小、材質(zhì)等相同的小球,從袋中隨意摸出1個球,記事件A為“摸出的球編號為奇數(shù)”,隨意拋擲一個之地均勻正方體骰子,六個面上分別寫有1﹣6這6個整數(shù),記事件B為“向上一面的數(shù)字是3的整數(shù)倍”,請你判斷等式“P(A)=2P(B)”是否成立,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB與⊙O相切于點C,OA,OB分別交⊙O于點D,E,弧CD=弧CE.
(1)求證:OA=OB;
(2)已知∠A=30°,OA=4,求陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖(1),直線與x軸交于點A、與y軸交于點D,以AD為腰,以x軸為底作等腰梯形ABCD(AB>CD),且等腰梯形的面積是8,拋物線經(jīng)過等腰梯形的四個頂點.
圖(1)
(1) 求拋物線的解析式;
(2) 如圖(2)若點P為BC上的—個動點(與B、C不重合),以P為圓心,BP長為半徑作圓,與軸的另一個交點為E,作EF⊥AD,垂足為F,請判斷EF與⊙P的位置關系,并給以證明;
圖(2)
(3) 在(2)的條件下,是否存在點P,使⊙P與y軸相切,如果存在,請求出點P的坐標;如果不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com