【題目】在直角坐標(biāo)系XOY中,二次函數(shù)圖像的頂點坐標(biāo)為,且與x軸的兩個交點間的距離為6.
(1)求二次函數(shù)解析式;
(2)在x軸上方的拋物線上,是否存在點Q,使得以點Q、A、B為頂點的三角形與△ABC相似?如果存在,請求出Q點的坐標(biāo),如果不存在,請說明理由.
【答案】(1);(2)存在點或
【解析】
(1)由已知開設(shè)解析式:,B(7,0),進(jìn)一步可求出結(jié)果;(2)過點O作CD⊥x軸于D,過點Q作QE⊥x軸于E,利用三角函數(shù)求出E,Q坐標(biāo),證明點Q在拋物線上,由拋物線的對稱性,還存在一點,使△ABQ′∽△CAB.
(1)由已知開設(shè)解析式:,B(7,0)
把B(7,0)代入,求得a=
故所求解析式為
(2)在x軸上方的拋物線上存在點Q,使得以點Q、A、B為頂點的三角形與△ABC相似,
因為△ABC為等腰三角形,
∴當(dāng)AB=BQ,
∵AB=6,
∴BQ=6,
過點O作CD⊥x軸于D,則AD=3,CD=,
∴∠BAC=∠ABC=30°,∴∠ACB=120°,∴∠ABQ=120°,
過點Q作QE⊥x軸于E,則∠QBE=60°,
∴QE=BQsin60°=,
∴BE=3,
∴E(10, 0),.
當(dāng)x=10時,
∴點Q在拋物線上,
由拋物線的對稱性,還存在一點,
使△ABQ′∽△CAB故存在點或.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,若二次函數(shù)y=ax2+bx+c(a≠0)圖象的對稱軸為x=1,與y軸交于點C,與x軸交于點A、點B(﹣1,0),則
①二次函數(shù)的最大值為a+b+c;
②a﹣b+c<0;
③b2﹣4ac<0;
④當(dāng)y>0時,﹣1<x<3,其中正確的個數(shù)是( 。
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,M為BC上一點,F是AM的中點,EF⊥AM,垂足為F,交AD的延長線于點E,交DC于點N.
(1)求證:△ABM∽△EFA;
(2)若AB=12,BM=5,求DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊△ABC中,AC=9,點O在AC上,且AO=3,點P是AB上一動點,連結(jié)OP,將線段OP繞點O逆時針旋轉(zhuǎn)60°得到線段OD,要使點D恰好落在BC上,則AP的長是( 。
A.3B.5C.6D.8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲乙兩人在玩轉(zhuǎn)盤游戲時,把轉(zhuǎn)盤A、B分別分成4等份、3等份,并在每一份內(nèi)標(biāo)上數(shù)字,如圖所示.游戲規(guī)定,轉(zhuǎn)動兩個轉(zhuǎn)盤停止后,指針?biāo)傅膬蓚數(shù)字之和為奇數(shù)時,甲獲勝;為偶數(shù)時,乙獲勝.
(1)用列表法(或畫樹狀圖)求甲獲勝的概率;
(2)你認(rèn)為這個游戲規(guī)則對雙方公平嗎?請簡要說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某廠家生產(chǎn)并銷售某種產(chǎn)品,假設(shè)銷售量與產(chǎn)量相等,如圖中的折線ABD,線段CD分別表示該產(chǎn)品每千克生產(chǎn)成本y1(單位:元),銷售價y2(單位:元)與產(chǎn)量x(單位:kg)之間的函數(shù)關(guān)系.
(1)請解釋圖中點D的實際意義.
(2)求線段CD所表示的y2與x之間的函數(shù)表達(dá)式.
(3)當(dāng)該產(chǎn)品產(chǎn)量為多少時,獲得的利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】準(zhǔn)備一張矩形紙片,按如圖操作:
將△ABE沿BE翻折,使點A落在對角線BD上的M點,將△CDF沿DF翻折,使點C落在對角線BD上的N點.
(1)求證:四邊形BFDE是平行四邊形;
(2)若四邊形BFDE是菱形,BE=2,求菱形BFDE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:三角形一邊上的點將該邊分為兩條線段,且這兩條線段的積等于這個點到該邊所對頂點連線的平方,則稱這個點為三角形該邊的“好點”.如圖1,△ABC中,點D是BC邊上一點,連結(jié)AD,若,則稱點D是△ABC中BC邊上的“好點”.
(1)如圖2,△ABC的頂點是網(wǎng)格圖的格點,請僅用直尺畫出AB邊上的一個“好點”.
(2)△ABC中,BC=9,,,點D是BC邊上的“好點”,求線段BD的長.
(3)如圖3,△ABC是的內(nèi)接三角形,OH⊥AB于點H,連結(jié)CH并延長交于點D.
①求證:點H是△BCD中CD邊上的“好點”.
②若的半徑為9,∠ABD=90°,OH=6,請直接寫出的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某足球運(yùn)動員站在點O處練習(xí)射門.將足球從離地面0.5m的A處正對球門踢出(點A在y軸上),足球的飛行高度y(單位:m)與飛行時間t(單位:s)之間滿足函數(shù)關(guān)系y=at2+5t+c,己知足球飛行0.8s時,離地面的高度為3.5m.
(1)a= ,c= ;
(2)當(dāng)足球飛行的時間為多少時,足球離地面最高?最大高度是多少?
(3)若足球飛行的水平距離x(單位:m)與飛行時間t(單位:s)之間具有函數(shù)關(guān)系x=10t,已知球門的高度為2.44m,如果該運(yùn)動員正對球門射門時,離球門的水平距離為28m,他能否將球直接射入球門?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com