【題目】如圖,OA,OB是⊙O的兩條半徑,OA⊥OB,C是半徑OB上一動點,連結(jié)AC并延長交⊙O于D,過點D作圓的切線交OB的延長線于E,已知OA=8.
(1)求證:∠ECD=∠EDC;
(2)若tanA= ,求DE長;
(3)當∠A從15°增大到30°的過程中,求弦AD在圓內(nèi)掃過的面積.
【答案】
(1)
證明:連結(jié)OD,
∵DE是⊙O的切線,∴∠EDC+∠ODA=90°,
又∵OA⊥OB,∴∠ACO+∠A=90°,
∵OA=OD,∴∠ODA=∠A,∴∠EDC=∠ACO,
又∵∠ECD=∠ACO,∴∠ECD=∠EDC.
(2)
解:∵tanA= ,∴ ,∴OC=2,
設DE=x,∵∠ECD=∠EDC,∴CE=x,∴OE=2+x.
∵∠ODE=90°,∴OD2+DE2=OE2,
∴82+x 2=(2+x)2,x=15,∴DE=CE=15.
(3)
解:過點D作AO的垂線,交AO的延長于F,
當 時,則 ,DF=4,
當 時, ,DF=4 ,
,
【解析】(1)運用切線的性質(zhì)以及對頂角相等,角的等量代換可證得;(2)由tanA= ,可解出OC,由(1)得∠ECD=∠EDC , 等角對等邊,則EC=DE,由勾股定理得OD2+DE2=OE2 , 構(gòu)造方程解出DE的長;(3)分別求出 和 時,弓形ABD的面積,再用前者減去后者即可得到答案.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點C為線段AB上一點,△ACM、△CBN是等邊三角形,直線AN、MC交于點E,直線BM、CN交于點F.
(1)求證:AN=MB;
(2)求證:△CEF為等邊三角形;
(3)將△ACM繞點C按逆時針方向旋轉(zhuǎn)90°,其它條件不變,在圖②中補出符合要求的圖形,并判斷(1)題中的結(jié)論是否依然成立,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,以AB為直徑的⊙O是△ADC的外接圓,過點O作PO⊥AB,交AC于點E,PC的延長線交AB的延長線于點F,∠PEC=∠PCE.
(1)求證:FC為⊙O的切線;
(2)若△ADC是邊長為a的等邊三角形,求AB的長.(用含a的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,AE平分∠BAD交BC于E,∠CAE=15°,則下列結(jié)論:
①△ODC是等邊三角形 ②BC=2AB ③∠AOE=135° ④S△AOE=S△COE
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是小強洗漱時的側(cè)面示意圖,洗漱臺(矩形 )靠墻擺放,高 ,寬 ,小強身高 ,下半身 ,洗漱時下半身與地面成 ( ),身體前傾成 ( ),腳與洗漱臺距離 (點 , , , 在同一直線上).
(1)此時小強頭部 點與地面 相距多少?
(2)小強希望他的頭部 恰好在洗漱盆 的中點 的正上方,他應向前或后退多少?
( , , ,結(jié)果精確到 )
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一副含 和 角的三角板 和 疊合在一起,邊 與 重合, (如圖1),點 為邊 的中點,邊 與 相交于點 .現(xiàn)將三角板 繞點 按順時針方向旋轉(zhuǎn)(如圖2),在 從 到 的變化過程中,點 相應移動的路徑長為 . (結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是O的直徑,AE交O于點E,且與O的切線CD互相垂直,垂足為D.
(1)求證:∠EAC=∠CAB;
(2)若CD=4,AD=8:①求O的半徑;②求tan∠BAE的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】南沙群島是我國固有領(lǐng)土,現(xiàn)在我南海漁民要在南沙某海島附近進行捕魚作業(yè),當漁船航行至B處時,測得該島位于正北方向20(1+ )海里的C處,為了防止某國海巡警干擾,就請求我A處的漁監(jiān)船前往C處護航,已知C位于A處的北偏東45°方向上,A位于B的北偏西30°的方向上,求A、C之間的距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com