【題目】已知關(guān)于 的方程 .
(1)求證:方程總有兩個不相等的實數(shù)根;
(2)若方程的兩個實數(shù)根都是整數(shù),求整數(shù) 的值.
【答案】
(1)
證明:∵ ,
∴ 是關(guān)于x的一元二次方程.
∵
恒成立
∴此方程總有兩個不相等的實數(shù)根
(2)
解: ,
∴ .
∵方程的兩個實數(shù)根都是整數(shù),且m是整數(shù),
∴ 或
【解析】(1)計算出△的值,即可判定方程總有兩個不相等的實數(shù)根;
(2)解方程求得 ,再由方程的兩個實數(shù)根都是整數(shù),且m是整數(shù),即可求得m的值.
【考點精析】解答此題的關(guān)鍵在于理解求根公式的相關(guān)知識,掌握根的判別式△=b2-4ac,這里可以分為3種情況:1、當△>0時,一元二次方程有2個不相等的實數(shù)根2、當△=0時,一元二次方程有2個相同的實數(shù)根3、當△<0時,一元二次方程沒有實數(shù)根,以及對根與系數(shù)的關(guān)系的理解,了解一元二次方程ax2+bx+c=0(a≠0)的根由方程的系數(shù)a、b、c而定;兩根之和等于方程的一次項系數(shù)除以二次項系數(shù)所得的商的相反數(shù);兩根之積等于常數(shù)項除以二次項系數(shù)所得的商.
科目:初中數(shù)學 來源: 題型:
【題目】若a=255 ,b=344,c=433,則a ,b,c 大小關(guān)系是( )
A. b>c>a B. a>b>c C. c>a>b D. a<b<c
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中, , 的垂直平分線分別與, 及的延長線相交于點, , ,且. ⊙O是的外接圓, 的平分線交于點,交⊙O于點,連接, .
(1)求證: ;
(2)試判斷與⊙O的位置關(guān)系,并說明理由;
(3)若, 求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD為平行四邊形,∠BAD的角平分線AF交CD于點E , 交BC的延長線于點F .
(1)求證:BF=CD;
(2)連接BE , 若BE⊥AF , ∠F=60°, ,求 的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某企業(yè)積極響應政府“創(chuàng)新發(fā)展”的號召,研發(fā)了一種新產(chǎn)品.已知研發(fā)、生產(chǎn)這種產(chǎn)品的成本為30元/件,且年銷售量y(萬件)關(guān)于售價x(元/件)的函數(shù)解析式為:
(1)若企業(yè)銷售該產(chǎn)品獲得的利潤為W(萬元),請直接寫出年利潤W(萬元)關(guān)于售價x(元/件)的函數(shù)解析式;
(2)當該產(chǎn)品的售價x(元/件)為多少時,企業(yè)銷售該產(chǎn)品獲得的年利潤最大?最大年利潤是多少?
(3)若企業(yè)銷售該產(chǎn)品的年利潤不少于750萬元,試確定該產(chǎn)品的售價x(元/件)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com