【題目】已知菱形ABCD的邊長為5,∠DAB=60°.將菱形ABCD繞著A逆時針旋轉(zhuǎn)得到菱形AEFG,設(shè)∠EAB=α,且0°<α<90°,連接DG、BE、CE、CF.
(1)如圖(1),求證:△AGD≌△AEB;
(2)當(dāng)α=60°時,在圖(2)中畫出圖形并求出線段CF的長;
(3)若∠CEF=90°,在圖(3)中畫出圖形并求出△CEF的面積.
【答案】(1)見解析;(2)5 ;(3)
【解析】試題分析:(1)利用AD=AB,AG=AE,∠GAD=∠EAB(SAS)證明△AGD≌△AEB即可;
(2)當(dāng)α=60°時,AE與AD重合,作DH⊥CF于H.由已知可得∠CDF=120°,DF=DC=5.在Rt△CDH中,CH=DCsin60°,繼而求出CF的長;
(3)當(dāng)∠CEF=90°時,延長CE交AG于M,連接AC,∠CEF=90°,只需求出EC的長,又EC=MC﹣ME.在Rt△AME和Rt△AMC中求解MC和ME的長即可.
試題解析:解:(1)∵菱形ABCD繞著點(diǎn)A逆時針旋轉(zhuǎn)得到菱形AEFG,∴AG=AD,AE=AB,∠GAD=∠EAB=α.∵四邊形AEFG是菱形,∴AD=AB,∴AG=AE,∴△AGD≌△AEB.
(2)解法一:如圖(1),當(dāng)α=60°時,AE與AD重合,作DH⊥CF于H.由已知可得∠CDF=120°,DF=DC=5,∴∠CDH=∠CDF=60°,CH=CF.
在Rt△CDH中,∵CH=DCsin60°=5×=,∴CF=2CH=5.
解法二:如圖(1),當(dāng)α=60°時,AE與AD重合,連接AF、AC、BD、AC與BD交于點(diǎn)O.
由題意,知AF=AC,∠FAC=60°,∴△AFC是等邊三角形,∴FC=AC.
由已知,∠DAO=∠BAD=30°,AC⊥BD,∴AO=ADcos30°=,∴AC=2AO=5,∴FC=AC=5.
(3)如圖(2),當(dāng)∠CEF=90°時,延長CE交AG于M,連接AC.
∵四邊形AEFG是菱形,∴EF∥AG.
∵∠CEF=90°,∴∠GME=90°,∴∠AME=90°.
在Rt△AME中,AE=5,∠MAE=60°,∴AM=AEcos60°=,EM=AEsin60°=.
在Rt△AMC中,易求AC=5,∴MC==,∴EC=MC﹣ME=﹣(﹣),∴S△CEF=ECEF=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)P的坐標(biāo)為(x1,y1),點(diǎn)Q的坐標(biāo)為(x2,y2),且x1≠x2,y1≠y2.若P,Q為某個矩形的兩個頂點(diǎn),且該矩形的邊均與某條坐標(biāo)軸垂直,則稱該矩形為點(diǎn)P,Q的“相關(guān)矩形”,下圖①為點(diǎn)P,Q的“相關(guān)矩形”的示意圖.
已知點(diǎn)A的坐標(biāo)為(1,0),
(1)若點(diǎn)B的坐標(biāo)為(3,1),求點(diǎn)A,B的“相關(guān)矩形”的面積;
(2)點(diǎn)C在直線x=3上,若點(diǎn)A,C的“相關(guān)矩形”為正方形,求直線AC的表達(dá)式;
(3)若點(diǎn)D的坐標(biāo)為(4,2),將直線y=2x+b平移,當(dāng)它與點(diǎn)A,D的“相關(guān)矩形”沒有公共點(diǎn)時,求出b的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一個n位自然數(shù)能被x0整除,依次輪換個位數(shù)字得到的新數(shù)能被x0+1整除,再依次輪換個位數(shù)字得到的新數(shù)能被x0+2整除,按此規(guī)律輪換后, 能被x0+3整除,…, 能被x0+n﹣1整除,則稱這個n位數(shù)是x0的一個“輪換數(shù)”.
例如:60能被5整除,06能被6整除,則稱兩位數(shù)60是5的一個“輪換數(shù)”;
再如:324能被2整除,243能被3整除,432能被4整除,則稱三位數(shù)324是2的一個“輪換數(shù)”.
(1)若一個兩位自然數(shù)的個位數(shù)字是十位數(shù)字的2倍,求證這個兩位自然數(shù)一定是“輪換數(shù)”.
(2)若三位自然數(shù)是3的一個“輪換數(shù)”,其中a=2,求這個三位自然數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于每個正整數(shù) n,關(guān)于 x 的一元二次方程 0 的兩個根分別為 an、bn,設(shè)平面直角坐標(biāo)系中,An、Bn 兩點(diǎn)的坐標(biāo)分別為 An(an,0),Bn(bn,0),AnBn 表示這兩點(diǎn)間的距離,則 AnBn=____________(用含 n 的代數(shù)式表示);A1B1+ A2B2+ …+ A2011B2012 的值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一矩形紙片OABC 放在平面直角坐標(biāo)系中, O(0,0) , A(6,0) , C(0,3) .動點(diǎn)Q 從點(diǎn)O 出發(fā)以每秒 1 個單位長的速度沿OC 向終點(diǎn)C 運(yùn)動,運(yùn)動秒時,動點(diǎn) P 從點(diǎn)A 出發(fā)以相等的速度沿 AO 向終點(diǎn)O 運(yùn)動。當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時,另一點(diǎn)也停止運(yùn)動。設(shè)點(diǎn) P 的運(yùn)動時間為t (秒).
(1)用含t 的代數(shù)式表示OP,OQ ;
(2)當(dāng)t 1時,如圖 1,將△OPQ 沿 PQ 翻折,點(diǎn)O 恰好落在CB 邊上的點(diǎn) D 處,求點(diǎn) D 的坐標(biāo);
(3)連結(jié) AC ,將△OPQ 沿 PQ 翻折,得到△EPQ ,如圖 2.問: PQ 與 AC 能否平行? PE 與 AC 能否垂直?若能,求出相應(yīng)的t 值;若不能,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠B=30°,以點(diǎn)A為圓心,任意長為半徑畫弧,分別交AB,AC于點(diǎn)M和N,再分別以點(diǎn)M,N為圓心,大于MN長為半徑畫弧,兩弧交于點(diǎn)P,連結(jié)AP并延長,交BC于點(diǎn)D,則下列說法中,正確的個數(shù)是( )
①AD是∠BAC的平分線;②∠ADC=60°;③點(diǎn)D在AB的中垂線上;④S△DAC∶S△ABC=1∶3.
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)E在正方形ABCD的邊AB上,連接DE,過點(diǎn)C作CF⊥DE于F,過點(diǎn)A作AG∥CF交DE于點(diǎn)G.
(1)求證:△DCF≌△ADG.
(2)若點(diǎn)E是AB的中點(diǎn),設(shè)∠DCF=α,求sinα的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在結(jié)束了380課時初中階段教學(xué)內(nèi)容的教學(xué)后,劉老師計(jì)劃在增加60課時用于總復(fù)習(xí),將380課時按內(nèi)容所占比例,繪制如下統(tǒng)計(jì)圖表(圖1和~圖2),請根據(jù)圖表提供的信息,回答下列問題:
(1)圖1中“統(tǒng)計(jì)與概率”所在扇形的圓心角為度;
(2)圖2中的a= ;
(3)在60課時的總復(fù)習(xí)中,劉老師應(yīng)安排多少課時復(fù)習(xí)“數(shù)與代數(shù)”內(nèi)容?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)開展了“手機(jī)伴我健康行”主題活動.他們隨機(jī)抽取部分學(xué)生進(jìn)行“手機(jī)使用目的”和“每周使用手機(jī)時間”的問卷調(diào)查,并繪制成如圖①②的統(tǒng)計(jì)圖。已知“查資料”人人數(shù)是40人。
請你根據(jù)以上信息解答以下問題
(1)在扇形統(tǒng)計(jì)圖中,“玩游戲”對應(yīng)的圓心角度數(shù)是_______________。
(2)補(bǔ)全條形統(tǒng)計(jì)圖
(3)該校共有學(xué)生1200人,估計(jì)每周使用手機(jī)時間在2小時以上(不含2小時)的人數(shù)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com