【題目】1)(2a1)2(2a1)(12a) 22006×200820072

3)(x-y3·x-y2·y-x 4)(3mn+1)(3mn-1-8m2n2

【答案】14a+2;(2)-1;(3)-(x-y6;(4m2n2-1.

【解析】

1)先根據(jù)完全平方公式、平方差公式把括號(hào)展開,再合并同類項(xiàng)即可求解;(2)把2006×2008化為(2007-1)(2007+1),再利用平方差公式展開后合并即可;(3)先把底數(shù)統(tǒng)一,再按照同底數(shù)冪的乘法即可求出結(jié)果;(4)先根據(jù)平方差公式把括號(hào)展開,合并同類項(xiàng)即可.

1)(2a1)2(2a1)(12a)

=

=

=4a+2;

22006×200820072

=2007-1)(2007+1)-20072

=20072 -1-20072

=-1;

3)(x-y3·x-y2·y-x

= -x-y3·x-y2·x-y

=-(x-y6;

4)(3mn+1)(3mn-1-8m2n2

=-8m2n2

=m2n2-1.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中有RtABC,A90°,ABACA(-20)、B0, d)、C(-3,2.

1)求d的值;

2)將ABC沿軸的正方向平移a個(gè)單位,在第一象限內(nèi)B、C兩點(diǎn)的對(duì)應(yīng)點(diǎn)BC正好落在某反比例函數(shù)圖像上.請(qǐng)求出這個(gè)反比例函數(shù)和此時(shí)直線BC的解析式;

3)在(2)的條件下,直線y軸于點(diǎn)G,作軸于 是線段上的一點(diǎn),若面積相等,求點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一個(gè)正方形內(nèi)兩個(gè)相鄰正方形的面積分別為 4 2,它們都有兩個(gè)頂點(diǎn)在大正方形的邊 上且組成的圖形為軸對(duì)稱圖形,則圖中陰影部分的面積為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC的頂點(diǎn)A、BC在邊長(zhǎng)為1的網(wǎng)格格點(diǎn)上.

1)畫△ABC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°得到的△A1B1C1;

2)畫△A1B1C1關(guān)于點(diǎn)O的中心對(duì)稱圖形△A2B2C2;

3)平行四邊形A1B1A2B2的面積為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在矩形紙片ABCD中,AB=6,BC=8

1)將矩形紙片沿BD折疊,點(diǎn)A落在點(diǎn)E處(如圖①),設(shè)DEBC相交于點(diǎn)F,試說明△DBF是等腰三角形,并求出其周長(zhǎng).

2)將矩形紙片折疊,使點(diǎn)B與點(diǎn)D重合(如圖②),求折痕GH的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】能用平方差公式計(jì)算的是(

A.(-x+2y)(x-2y)B.(2x-y)(2y+x)C.(m-n)(n-m)D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,拋物線與x軸交點(diǎn)坐標(biāo)為A(1,0),C(-3,0),

(1)若已知頂點(diǎn)坐標(biāo)D為(-1,4)或B點(diǎn)(0,3),選擇適當(dāng)方式求拋物線的解析式.

(2)若直線DH為拋物線的對(duì)稱軸,在(1)的基礎(chǔ)上,求線段DK的長(zhǎng)度,并求△DBC的面積.

(3)將圖(2)中的對(duì)稱軸向左移動(dòng),交x軸于點(diǎn)p(m,0)(-3<m<-1),與線段BC、拋物線的交點(diǎn)分別為點(diǎn)K、Q,用含m的代數(shù)式表示QK的長(zhǎng)度,并求出當(dāng)m為何值時(shí),△BCQ的面積最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列短文:

如圖,G是四邊形ABCD對(duì)角線AC上一點(diǎn),過GGECDADE,GFCBABF,若EG=FG,則有BC=CD成立,同時(shí)可知四邊形ABCD與四邊形AFGE相似.

解答問題:

(1)有一塊三角形空地(如圖△ABC),BC鄰近公路,現(xiàn)需在此空地上修建一個(gè)正方形廣場(chǎng),其余地為草坪,要使廣場(chǎng)一邊靠公路,且其面積最大,如何設(shè)計(jì),請(qǐng)你在下面圖中畫出此廣場(chǎng)正方形.(尺規(guī)作圖,不寫作法)

(2)銳角△ABC是一塊三角形余料,邊AB=130mm,BC=150mm,AC=140mm,要把它加工成正方形零件,使正方形的一邊在三角形的一邊上,其余兩個(gè)頂點(diǎn)分別在另外兩條邊上,且剪去正方形零件后剩下的邊角料較少,這個(gè)正方形零件的邊長(zhǎng)是多少?你能得出什么結(jié)論,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】抗洪指揮部的一位駕駛員接到一個(gè)防洪的緊急任務(wù),要在限定的時(shí)內(nèi)把一批抗洪物質(zhì)從物質(zhì)局運(yùn)到水庫(kù),這輛車如果按每小時(shí)30千米的速度行駛在限定的時(shí)間內(nèi)趕到水庫(kù),還差3千米,他決定以每小時(shí)40千米的速度前進(jìn),結(jié)果比限定時(shí)間早到18分鐘,問限定時(shí)間是幾小時(shí)?物質(zhì)局倉(cāng)庫(kù)離水庫(kù)有多遠(yuǎn)?

查看答案和解析>>

同步練習(xí)冊(cè)答案