【題目】定義:如圖,若點D在的邊AB上,且滿足,則稱滿足這樣條件的點為的“理想點”
如圖,若點D是的邊AB的中點,,,試判斷點D是不是的“理想點”,并說明理由;
如圖,在中,,,,若點D是的“理想點”,求CD的長;
如圖,已知平面直角坐標系中,點,,C為x軸正半軸上一點,且滿足,在y軸上是否存在一點D,使點A,B,C,D中的某一點是其余三點圍成的三角形的“理想點”若存在,請求出點D的坐標;若不存在,請說明理由.
【答案】 見解析;(2);(3)存在,理由見解析.
【解析】
結(jié)論:點D是的“理想點”只要證明∽即可解決問題;
只要證明即可解決問題;
如圖中,存在有三種情形:過點A作交CB的延長線于M,作軸于構(gòu)造全等三角形,利用平行線分線段成比例定理構(gòu)建方程求出點C坐標,分三種情形求解即可解決問題;
解:結(jié)論:點D是的“理想點”.
理由:如圖中,
是AB中點,,
,
,,
,
,
,
∽,
,
點D是的“理想點”,
如圖中,
點D是的“理想點”,
或,
當(dāng)時,
,
,
,
當(dāng)時,同法證明:,
在中,,,,
,
,
.
如圖中,存在有三種情形:
過點A作交CB的延長線于M,作軸于H.
,,
,
,
,,
,
≌,
,,設(shè),
,,
,,,,
,
,
,
解得或舍棄,
經(jīng)檢驗是分式方程的解,
,,
當(dāng)時,點A是的“理想點”設(shè),
,,
∽,
,
,
解得,
.
當(dāng)時,點A是的“理想點”.
易知:,
,
.
當(dāng)時,點B是的“理想點”.
易知:,
,
.
綜上所述,滿足條件的點D坐標為或或.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在△ABC中,∠B=90o,以AB上的一點O為圓心,以OA為半徑的圓交AC于點D,交AB于點E.
(1)求證:AC·AD=AB·AE;
(2)如果BD是⊙O的切線,D是切點,E是OB的中點,當(dāng)BC=2時,求AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在一筆直的海岸線L上有A、B兩個觀測點,A在B的正東方向,AB=2km.有一艘小船在點P處,從A處測得小船在北偏西60°的方向,從B處測得小船在北偏東45°方向.
(1)求P點到海岸線l的距離.
(2)小船從點P處沿射線AP的方向繼續(xù)行駛,求小船到B處的最短距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在同一平面直角坐標系中,反比例函數(shù)y(b≠0)與二次函數(shù)y=ax2+bx(a≠0)的圖象大致是( 。
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,C為⊙O上一點,∠ABC的平分線交⊙O于點D,DE⊥BC于點E.
(1)試判斷DE與⊙O的位置關(guān)系,并說明理由;
(2)過點D作DF⊥AB于點F,若BE=3,DF=3,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市銷售一種商品,成本每千克40元,規(guī)定每千克售價不低于成本,且不高于80元,經(jīng)市場調(diào)查,每天的銷售量y(千克)與每千克售價x(元)滿足一次函數(shù)關(guān)系,部分數(shù)據(jù)如下表:
售價x(元/千克) | 50 | 60 | 70 |
銷售量y(千克) | 100 | 80 | 60 |
(1)求y與x之間的函數(shù)表達式;
(2)設(shè)商品每天的總利潤為W(元),則當(dāng)售價x定為多少元時,廠商每天能獲得最大利潤?最大利潤是多少?
(3)如果超市要獲得每天不低于1350元的利潤,且符合超市自己的規(guī)定,那么該商品每千克售價的取值范圍是多少?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線y=ax2+bx+3與x軸交于A(﹣4,0)、B(﹣l,0)兩點,與y軸交于點C,點D是第三象限的拋物線上一動點.
(1)求拋物線的解析式;
(2)設(shè)點D的橫坐標為m,△ACD的面積為量求出S與m的函數(shù)關(guān)系式,并確定m為何值時S有最大值,最大值是多少?
(3)若點P是拋物線對稱軸上一點,是否存在點P使得∠APC=90°?若存在,請直接寫出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在全校的科技制作大賽中,王浩同學(xué)用木板制作了一個帶有卡槽的三角形手機架.如圖所示,卡槽的寬度DF與內(nèi)三角形ABC的AB邊長相等.已知AC=20cm,BC=18cm,∠ACB=50°,一塊手機的最長邊為17cm,王浩同學(xué)能否將此手機立放入卡槽內(nèi)?請說明你的理由(參考數(shù)據(jù):sin50°≈0.8,cos50°≈0.6,tan50°≈1.2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,用放大鏡看△ABC,若邊BC的長度變?yōu)樵瓉淼?/span>2倍,那么下列說法中,不正確的是( ).
A.邊AB的長度也變?yōu)樵瓉淼?/span>2倍;B.∠BAC的度數(shù)也變?yōu)樵瓉淼?/span>2倍;
C.△ABC的周長變?yōu)樵瓉淼?/span>2倍;D.△ABC的面積變?yōu)樵瓉淼?/span>4倍;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com