【題目】如圖,AB是⊙O的直徑,點C為⊙O上一點,點P是半徑OB上一動點(不與O,B重合),過點P作射線l⊥AB,分別交弦BC,于D、E兩點,在射線l上取點F,使FC=FD.
(1)求證:FC是⊙O的切線;
(2)當點E是的中點時,
① 若∠BAC=60°,判斷以O,B,E,C為頂點的四邊形是什么特殊四邊形,并說明理由;
② 若,且AB=20,求OP的長.
【答案】(1)見解析;(2)①以O,B,E,C為頂點的四邊形是菱形.理由見解析,②6.
【解析】
(1)連接OC,根據(jù)等邊對等角及∠OBC+∠BDP=90°,證明∠OCB+∠FCD=90°即可;
(2)①四邊形BOCE是菱形,證明△BOE,△OCE均為等邊三角形,得到四條邊相等,進而證明四邊形BOCE是菱形;
②由,可求得AC=12,BC=16,由垂徑定理可求出BH;利用三角形面積的不同表示方法求得PE=8,再利用勾股定理可求出OP的長.
解:(1)證明:連接OC,
∵OB=OC,
∴∠OBC=∠OCB,
∵PF⊥AB,
∴∠BPD=90°,
∴∠OBC+∠BDP=90°,
∵FC=FD
∴∠FCD=∠FDC
∵∠FDC=∠BDP
∴∠OCB+∠FCD=90°
∴OC⊥FC
∴FC是⊙O的切線;
(2)如圖2,連接OC,OE,BE,CE,
①以O,B,E,C為頂點的四邊形是菱形.
理由如下:
∵AB是直徑,∴∠ACB=90°,
∵∠BAC=60°,∴∠BOC=120°,
∵點E是的中點,
∴∠BOE=∠COE=60°,
∵OB=OE=OC,
∴△BOE,△OCE均為等邊三角形,
∴OB=BE=CE=OC,
∴四邊形BOCE是菱形;
②∵,設AC=3k,BC=4k(k>0),
由勾股定理得AC2+BC2=AB2,即(3k)2+(4k)2=202,解得k=4,
∴AC=12,BC=16,
∵點E是的中點,
∴OE⊥BC,BH=CH=8,
∴OE×BH=OB×PE,即10×8=10PE,解得:PE=8,
由勾股定理得OP===6.
科目:初中數(shù)學 來源: 題型:
【題目】在“雙11”期間,新華商場銷售某種冰箱,每臺進價為3000元,調(diào)查發(fā)現(xiàn),當銷售價為3600元時,平均每天能售出16臺,而當銷售價每降低50元時,平均每天就能多售出4臺. 假設每臺冰箱降價元(x為50的整數(shù)倍,0<x<600).
(1)直接寫出平均每天商場銷售冰箱的數(shù)量y(臺)與x(元)之間的關(guān)系;
(2)要想這種冰箱的銷售利潤平均每天達到12800元,每臺冰箱的定價應為多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在矩形ABCD中,AB=8cm,BC=6cm,點P從點A出發(fā),沿AB邊向點B以每秒2cm的速度移動,同時點Q從點D出發(fā)沿DA邊向點A以每秒1cm的速度移動,P、Q其中一點到達終點時,另一點隨之停止運動.設運動時間為t秒.回答下列問題:
(1)如圖①,幾秒后△APQ的面積等于5cm2.
(2)如圖②,若以點P為圓心,PQ為半徑作⊙P.在運動過程中,是否存在t值,使得點C落在⊙P上?若存在,求出t的值;若不存在,請說明理由.
(3)如圖③,若以Q為圓心,DQ為半徑作⊙Q,當⊙Q與AC相切時
①求t的值.
②如圖④,若點E是此時⊙Q上一動點,F是BE的中點,請直接寫出CF的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線
對稱軸為______,頂點坐標為______;
在坐標系中利用五點法畫出此拋物線.
x | ______ | ______ | ______ | ______ | ______ | ||
y | ______ | ______ | ______ | ______ | ______ |
若拋物線與x軸交點為A、B,點在拋物線上,求的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知正方形ABCD的邊長為6,E,F分別是AB、BC邊上的點,且∠EDF=45°,將△DAE繞點D逆時針旋轉(zhuǎn)90°,得到△DCM.
(1)求證:EF=MF;
(2)若AE=2,求FC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀材料:為解方程(x2﹣1)2﹣5(x2﹣1)+4=0,我們可以將x2﹣1視為一個整體,然后設x2﹣1=y,則(x2﹣1)2=y2,原方程化為y2﹣5y+4=0.
解得y1=1,y2=4
當y=1時,x2﹣1=1.∴x2=2.∴x=±;
當y=4時,x2﹣1=4,∴x2=5,∴x=±.
∴原方程的解為x1=,x2=﹣,x3=,x4=﹣,
請利用以上知識解決下列問題:
如果(m2+n2﹣1)(m2+n2+2)=4,則m2+n2=__.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,D、E分別是AB、AC上的點,且DE∥BC,如果AD=2cm,DB=1cm,AE=1.8cm,則EC=( 。
A. 0.9cm B. 1cm C. 3.6cm D. 0.2cm
【答案】A
【解析】試題分析:根據(jù)平行線分線段成比例定理得到=,然后利用比例性質(zhì)求EC的長.
解:∵DE∥BC,
∴=,即=,
∴EC=0.9(cm).
故選A.
考點:平行線分線段成比例.
【題型】單選題
【結(jié)束】
6
【題目】點C是線段AB的黃金分割點(AC>BC),若AB=10cm,則AC等于( )
A. 6 cm B. cm C. cm D. cm
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形中,點、為邊和上的動點(不含端點),.下列三個結(jié)論:①當時,則;②;③的周長不變,其中正確結(jié)論的個數(shù)是( )
A.0B.1
C.2D.3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“陽光體育活動”促進了學校體育活動的開展,小杰在一次鉛球比賽中,鉛球出手以后的軌跡是拋物線的一部分(如圖所示),已知鉛球出手時離地面1.6米,鉛球離投擲點3米時達到最高點,在離投擲點8米處落地,
(1)請求出此軌跡所在拋物線的關(guān)系式.
(2)設拋物線與X軸另一個交點是E,點Q是對稱軸上的一個動點,求當△EBQ的周長最短時點Q的坐標.
(3)在拋物線上是否存在點G使得S△DEG=19.5,若存在請求出點G的坐標,若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com