如圖,△ABC中,AB=AC,點(diǎn)D,E,F(xiàn)分別在邊BC,AB,AC上,且BD=CF,∠EDF=∠B,圖中是否存在和△BDE全等的三角形?并說(shuō)明理由.

【答案】分析:由AB=AC可得∠B=∠C,根據(jù)角之間的關(guān)系可推出∠BED=∠CDF,又已知BD=CF,所以由AAS可推出△BDE≌△CFD.
解答:解:存在,△BDE≌△CFD.
理由:∵∠EDC=∠EDF+∠CDF,∠EDC=∠B+∠BED,
∴∠EDF+∠CDF=∠B+∠BED,
又∵∠EDF=∠B,
∴∠BED=∠CDF.
∵AB=AC
∴∠B=∠C
∵BD=CF
∴△BDE≌△CFD(AAS).
點(diǎn)評(píng):此題主要考查學(xué)生對(duì)等腰三角形的性質(zhì)及全等三角形的判定方法的掌握情況.得到∠BED=∠CDF是正確解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

26、已知:如圖,△ABC中,點(diǎn)D在AC的延長(zhǎng)線(xiàn)上,CE是∠DCB的角平分線(xiàn),且CE∥AB.
求證:∠A=∠B.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

27、已知:如圖,△ABC中,∠BAC=60°,D、E兩點(diǎn)在直線(xiàn)BC上,連接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

27、如圖,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求證:∠ANM=∠B.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

14、如圖,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,則∠C的大小是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知,如圖,△ABC中,點(diǎn)D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度數(shù);
(2)若畫(huà)∠DAC的平分線(xiàn)AE交BC于點(diǎn)E,則AE與BC有什么位置關(guān)系,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案